Appendix E3 Contamination -Dredging and disposal area

Australian Industrial Energy

Port Kembla Gas Terminal Sediment Contamination Assessment Report

November 2018

Executive summary

Australian Industrial Energy (AIE) proposes to develop the Port Kembla Gas Terminal (the project) in Port Kembla, New South Wales (NSW). The project involves the development of a liquefied natural gas (LNG) import terminal including a Floating Storage and Regasification Unit (FSRU) moored at Berth 101 in the Inner Harbour, visiting LNG carriers, wharf offloading facilities and the installation of new pipeline to connect to the existing gas transmission network.

The development of the facility would require dredging and excavation of the sediments off Berth 101 in order to accommodate the FRSU and visiting LNG carriers. The material removed during dredging off Berth 101, would be disposed of on the south side of the Outer Harbour in a designated reclamation area. This report provides the results of the contamination assessment of the sediments from the proposed dredging area and the sediments in the proposed Outer Harbour reclamation area.

The objectives of the assessment were to:

- Assess the likely contamination based on previous marine sediment investigations.
- Assess the sediments and contamination of the proposed dredging area off Berth 101.
- Assess the sediments and contamination of the sediments likely to be removed for construction of the bund around the proposed disposal area.
- Assess the potential presence of Acid Sulphate Soils (ASS)

Background information

Port Kembla was developed in the late 1800's to service the coal industry in the Illawarra region, and has since serviced a variety of industries. Since that time several capital dredging campaigns have been undertaken to facilitate the development of shipping berths such as Berth 103, 105 and 107. Maintenance dredging activities are undertaken less frequently, with the last port wide maintenance dredging campaign carried out in 1986. Management of declared depths is primarily managed through annual sweep dredging (i.e. bed levelling using a sweep bar). These operations result in repeated mobilisation of sediments from within the channel and berth areas.

The site, for investigation of marine sediment contamination, consists of two investigation areas. One comprising the waters off Berth 101 and another area in the Outer Harbour, where the dredge sediment will be disposed of as part of harbour reclamation works.

Several investigations have previously been undertaken to assess the contamination of the marine sediments in Port Kembla Harbour. Based on the information obtained during the background information review, the following points are noted:

- Commonly two main sedimentary units were identified with a soft silty clay layer overlying a stiffer clay layer.
- The upper soft silty clays were contaminated throughout all sampling areas.
- Heavy metals commonly exceeded the screening levels for cadmium, chromium, copper, lead, nickel, mercury and zinc.
- Tributyltin (TBT), dioxins and polycyclic aromatic hydrocarbons (PAHs) were reported above the nominated guidelines in several studies

Sampling approach

Fresh sampling for the project was completed in October 2018 and included seven sampling locations within the dredge footprint off Berth 101 and two locations at the reclamation area including vibracoring (five locations) and hand coring (four locations). As a result of weather conditions, the sampling approach was revised for the second day of sampling as vibracoring was not considered a safe option due to heavy rain conditions.

Sampling locations were selected at random from a grid of the area for the area of Berth 101 and to target the outer edge of the reclamation area.

Key findings

Two main sedimentary units were identified in the dredge footprint at Berth 101 comprising a soft silty clay layer overlying a stiffer clay layer. Sediments encountered at the disposal area were stratigraphcially different to Berth 101, predominantly comprising black-brown clayey silt.

The sediment sampling program was limited owing to weather conditions and the need to revise the sampling approach during the course of the works. Whilst the depth of sampling was limited to approximately 0.7 metres for some locations, no obvious vertical trend in contaminant concentration with depth was noted in sediment cores collected from the dredge footprint at Berth 101 where shallow (0-0.5) and underlying samples were analysed.

Elevated metal concentrations were reported above the nominated screening levels in the dredge footprint at both Berth 101 and the disposal area. Other contaminants of potential concern, including PAH, TBT and hydrocarbons reported 95% UCL average concentrations below the nominated screening levels in the dredge area at Berth 101.

With the exception of one sampling location at the disposal area (REA01-1-1.5), concentrations of heavy metals were generally consistent between the Berth 101 dredging area and disposal area. Some metals, notably lead, mercury and zinc, were an order of magnitude higher in sample REA01_1-1.5 than other samples. With the exception of one sample (REA01_1-1.5), concentrations of PAH, TBT and TPH in the disposal area were largely consistent with data reported for the dredge area. Statistical evaluation of the dataset from the disposal area was not considered valid based on the variability of material encountered and number of sampling locations and as such individual results were reviewed with reference to the screening criteria. Concentrations of PAH and TPH in sample REA01-1.1.5 exceeded the NAGD (2009) screening levels.

Dioxin levels were largely consistent across the two sampling areas with the sediments from the Berth 101 dredge footprint and disposal area reporting WHO $TEQ_{(0.5 LOR)}$ of 9.4 ppt and 12.2 ppt respectively. Whilst Australian guidelines for dioxins are not currently available, these levels are within the range of background concentrations reported for Australian sediments (Muller et al., 2004) and consistent with the mean WHO $TEQ_{(0.5 LOR)}$ reported by Worley Parsons (2012) of 15.4 ppt.

Analytical results were generally consistent with those reported previously by others including AECOM (2010) and Worley Parsons (2012). No new contaminants of potential concern were identified at levels exceeding screening criteria during the current investigation. Elutriate testing was not completed during the current investigation. However, based on the comparison of data with previous sampling events, the results of elutriate testing reported by AECOM (2010), Worley Parsons (2012) and Geochemical Assessments (2013) are considered relevant to these works and likely indicative of current conditions.

Consistent with the findings of previous investigations including AECOM (2010), Worley Parsons (2012) and Geochemical Assessments (2013), the results indicate the presence of PASS and potential acid generating capacity of the sediments.

Conclusions

Overall, the findings of the investigation indicate the presence of contaminated sediments within the proposed dredging and disposal areas. Concentrations of contaminants of concern were largely consistent across the two areas, with concentrations of heavy metals exceeding the screening criteria in both the Berth 101 dredge area and disposal area. PAH and hydrocarbons were reported above the screening criteria in one sediment sample collected from the disposal area.

With reference to potential impacts on the project, the following points are noted:

- The project will involve dredging of sediments from Berth 101 and emplacement within the disposal area. Contaminated sediments will be placed within the perimeter bund of the disposal area and capped with clean sediments. Details for the management of this process will be documented in the dredge management plan.
- There is the potential for mobilisation of contaminants, notably heavy metals, into the water column during dredging activities. Based on review of the information obtained during this investigation, and the findings of previous investigations, the following points are noted:
 - Elutriate testing completed by Worley Parsons (2012) indicates that whilst concentrations of heavy metals may have been reported above the screening levels in sediments, concentrations of dissolved metals in elutriate waters were below the ANZECC trigger levels for 95% protection of species.
 - Bioavailability testing indicates that some heavy metals, notably cadmium, chromium copper, lead and zinc, have the potential to be bioavailable to marine organisms within the sediments.
 - The potential bioavailability of contaminants, including detailed review of existing available data, will be considered during development of the dredge management strategy and in the implementation of the dredge management plan.
- Contaminated sediments will be placed within the perimeter bund of the disposal area and capped with clean sediments. Details for the management of this process will be documented in the dredge management plan.
- Dredging activities will result in the suspension of sediments, potentially remobilising contamination into the water column. Mitigation measures to minimise impacts to receiving waters may include the use of a turbidity curtain to restrict the generation of turbidity plumes and localise any water quality issues. Details of these mitigation measures, including the approach for surface water monitoring, will be outlined in the dredge management plan.
- The results of the sediment sampling program indicate PASS conditions are present within the dredge footprint. An Acid Sulphate Soil Management Plan (ASSMP) will be prepared in line with the requirements of the Acid Sulphate Soils Management Advisory Committee Guidelines (ASSMAC, August 1998 and as updated). The ASSMP will be prepared to identify, manage and treat the PASS encountered during dredging to minimise the production of acid leachate. The dredging strategy will be designed to limit the timeframe for potential for oxidisation of the sediments. The potential for ASS generation would reduce greatly due to sediments being transferred to the disposal area immediately after dredging, limiting time for oxidation.

This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.5 and the assumptions and qualifications contained throughout the Report.

List of Acronyms

Abbreviation	Description
AIE	Australian Industrial Energy
ANZECC/ARMCANZ	Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand
ASS	Acid sulphate soils
ASSMAC	Acid Sulfate Soils Management Advisory Committee
AVS/SEM	Acid volatile sulfide/simultaneously extracted metals
BTEX	benzene, toluene, ethylbenzene and xylene
CCME	Canadian Council of Ministers of the Environment
COC	Chain of custody
CRS	Chromium reducible sulphur
DECC	Department of Environment Climate Change
DEMP	Dredging Environmental Management Plan
ECGP	East Coast Gas Project
FSRU	Floating Storage and Regasification Unit
LNG	Liquified natural gas
LOR	Limit of reporting
NAGD	National Assessment Guidelines for Dredging (2009)
NEPC	National Environment Protection Council
NODGDM	National Ocean Disposal Guidelines for Dredged Material (EA 2002)
OCP	Organochlorine pesticides
PAH	Polycyclic aromatic hydrocarbons
PASS	Potenital acid sulphate soils
PCB	Polychlorinated biphenol
PID	Photo-ionization detector
PSD	Particle size distribution
RAP	Remedial action plan
SOP	Standard operating procedure
SPOCAS	Suspension peroxide oxidation combined acidity and sulphur
ТВТ	Tributyltin
TCLP	Toxic characteristic leaching procedure
TEQ	Toxic equivalent quantity
TOC	Total organic carbon
TRH	Total recoverable hydrocarbons
UCL	Upper confidence limit
USCS	Unified Soil Classification System

Table of contents

1.	Intro	duction	7
	1.1	Background	7
	1.2	Objectives	7
	1.3	Scope of work	7
	1.4	Basis for assessment	8
	1.5	Limitations	8
2.	Site s	setting	10
	2.1	Overview	10
	2.2	The site	10
3.	Exist	ing information	13
	3.1	Previous sediment investigations	13
	3.2	Summary previous investigations	20
4.	Meth	odology	21
	4.1	Sediment sampling event	21
	4.2	Sediment sampling and core logging methodology	21
	4.3	Data evaluation	23
5.	Resu	lts	25
	5.1	Subsurface conditions	25
	5.2	Data validation	26
	5.3	Analytical results summary	27
6.	Conc	lusions	34
	6.1	Summary findings	34
	6.2	Conclusions	35
7.	Refe	rences	37

Table index

Table 1 – Summary of cores	21
Table 2 – Summary analytcial results – Metal concentrations at Berth 101	27
Table 3 – Summary analytcial results – Metal concentrations at disposal area	30
Table 4- Dioxin summary results – Total TEQ	32

Appendices

Appendix A - Figures

- Appendix B Summary of Lab Results
- Appendix C Core Logs
- Appendix D Field Documentation
- Appendix E Laboratory Documentation

1. Introduction

1.1 Background

Australian Industrial Energy (AIE) proposes to develop the Port Kembla Gas Terminal (the project) in Port Kembla, New South Wales (NSW). The project involves the development of a liquified natural gas (LNG) import terminal including a Floating Storage and Regasification Unit (FSRU) moored at Berth 101 in the Inner Harbour, visiting LNG carriers, wharf handling facilities and the installation of a new pipeline to connect to the existing gas transmission network.

The development of the facility would require dredging and excavation of the sediments off Berth 101 in order to accommodate the FSRU and visiting LNG carriers. The proposed dredging area is presented in Appendix A, Figure 1.

The material removed during dredging off Berth 101, would be disposed of on the south side of the Outer Habout in a designated reclamation area (Appendix A, Figure 2).

This report provides the results of the contamination assessment of the sediments from the proposed dredging area and the sediments in the proposed Outer Harbour reclamation area.

The sediment investigation was undertaken in conjunction with the contaminated land assessment for Berth 101. The findings of the contamination assessment are reported in GHD (2018) *Australian Industrial Energy, East Coast Gas Project, Contamination Assessment Report*, October 2018

1.2 Objectives

The objectives of the assessment were to:

- Assess the likely contamination based on previous marine sediment investigations.
- Assess the sediments and contamination of the proposed dredging area off Berth 101.
- Assess the sediments and contamination of the sediments likely to be removed for construction of the bund around the proposed disposal area.
- Assess the potential presence of Acid Sulphate Soils (ASS)

1.3 Scope of work

The work carried out by GHD to meet the above objectives included:

- A review of previous contamination assessments of the marine sediments of Port Kembla Harbour.
- A marine sediment investigation comprising:
 - Three vibracores in the waters off Berth 101 to between 2.65 m and 4.4 m.
 - Two vibracores in the proposed disposal area in the Outer Harbour to 3.45 m and 3.6 m.
 - Four hand cores in the waters off Berth 101
 - Logging of sediment units in all cores
- Laboratory analysis of:
 - 17 samples from the cores for: contaminants of potential concern including heavy metals, dioxins, cyanide, ammonia, total recoverable hydrocarbons (TRH), benzene, toluene, ethyl benzene and total xylene (BTEX), polycyclic aromatic hydrocarbons (PAH),

tributyl tin (TBT) and physical properties including total organic carbon(TOC), moisture content and particle size distribution (PSD).

- 28 samples for screening for potential acid sulphate soils
- 12 samples for chromium reducible sulphur suite
- Quality control sampling including duplicate and triplicate sediment samples, trip blanks, trip spikes and rinsate samples from sampling equipment.
- Preparation of this report summarising previous knowledge of the sediments of Port Kembla Harbour, presenting and interpreting analytical results and findings, comparing chemical concentrations to applicable guidelines, and making recommendations with respect to the objectives outlined in Section 1.2. The contamination aspects of the report were prepared with reference to NSW EPA approved guidelines.

1.4 Basis for assessment

As outlined in Section 1.2, the works were completed to assess the contamination status of sediments within the proposed dredge footprint to inform options evaluation for the management of contaminated sediments during the proposed works. GHD understands dredge materials are proposed to be relocated to the reclamation area in the outer harbour.

The assessment criteria for sediment contamination proposed for this project were sourced from available guidelines including:

- National Assessment Guidelines for Dredging (NAGD 2009).
- ANZECC/ ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (as recommended in the NAGD (2009)).

The results for acid sulphate soils were compared to

 QLD (2014) Acid Sulfate Soils Technical Manual – Soil management Guidelines V4.0 based on greater than 1,000 tonnes of fine texture soils to be disturbed. Which is based on the guidelines of the Acid Sulphate Soils Management Advisory Committee (ASSMAC 1998).

The assessment criteria are referenced in the analytical results tables which are presented in Appendix B.

1.5 Limitations

This report: has been prepared by GHD for Australian Industrial Energy and may only be used and relied on by Australian Industrial Energy for the purpose agreed between GHD and the Australian Industrial Energy as set out in Section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than Australian Industrial Energy arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Australian Industrial Energy and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report, which were caused by errors, or omissions in that information.

Limited information is available on the early history of the site and therefore, some site activities may not have been identified. In addition, aerial photographs are up to 13 years apart and other site history information available prior to 1950 is limited. We cannot preclude that potentially contaminating activities took place during these periods. Allowances for uncertainties and potential unexpected finds should be made during planning and development phases.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with GHD understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Australian Industrial Energy based on the objectives and scope of work list in Sections 1.2 and 1.4. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation.

2. Site setting

2.1 Overview

Details of the wider site and the proposed development can be found in sections 3.1, 3.2, and 3.3 of the contamination report (GHD, 2018).

2.2 The site

Port Kembla was developed in the late 1800's to service the coal industry in the Illawarra region, and has since serviced a variety of industries. Since that time several capital dredging campaigns have been undertaken to facilitate the development of shipping berths such as Berth 103, 105 and 107. Maintenance dredging activities are undertaken less frequently, with the last port wide maintenance dredging campaign carried out in 1986. Management of declared depths is primarily managed through annual sweep dredging (i.e. bed levelling using a sweep bar). These operations result in repeated mobilisation of sediments from within the channel and berth areas.

The site, for investigation of marine sediment contamination, consists of two investigation areas. One comprising the waters off Berth 101 and another area in the Outer Harbour, where the dredge sediment will be disposed of as part of harbour reclamation works.

The wharf of Berth 101 (Photograph 1) extends into the water and is supported by timber piles. Revetments consisting of angular boulders protect the shoreline to the south of Berth 101, comprising half of the length of the study area. The water off Berth 101 is a high traffic area for cargo ships accessing the eastern and western basins of the inner harbour. The water off Berth 101 was turbid with a high suspended sediment load, water based dust suppression systems were observed on Berth 101 and a coal/coke stockpile was located at the northern end of Berth 101, these are assumed to be contributing runoff to the marine area.

The reclamation area encompasses a portion of the waters of the outer harbour, and has a wharf at its eastern end (Photograph 2) approximately 150 m from the outer harbour wall. The wharf is armoured on its western side with angular boulders, and the remainder of the shoreline on the southern side is comprised of a sand beach at water level (Photograph 3). The area is low traffic for shipping with smaller vessels using the wharf. Water of the reclamation area was of lower turbidity, with a reduced suspended sediment load.

Figure A – Excavation of Berth 101

Purple area is the current Berth and the red is the proposed dredging area. Green is the proposed stockpiling area.

Figure B – Proposed disposal area

The blue-green area southeast of the Berth is the proposed disposal area.

Photograph 1 Panorama of sampling area of shore of Berth 101, looking east to Berth 101 (03/10/2018)

Photograph 2 Wharf at east end of reclamation area (03/10/2018)

Photograph 3 South side of reclamation area (03/10/2018)

3. Existing information

Information relating to the history of the wider Port Kembla site can be found in Section 4 of the contamination assessment in Appendix E1 (GHD, 2018). In relation to contamination of the marine sediments Worley Parsons (2012) identified a number of previous land based activities that would have likely contributed to the possible contamination of marine sediments including:

- Industrial discharges associated with licensed activities
- Spill events within the harbour
- Overflows from Port Kembla Sewage Treatment Plant during storms
- Catchment road and industrial runoff
- Particulate matter, e.g. coal dust, through atmospheric deposition
- Redistribution of previously contaminated sediments through tug manoeuvring, passage of deep draft vessels and currents action , e.g. during floods
- Leaching from reclaimed and waste filled areas of the harbour foreshores
- Antifoulant coatings leaching and flaking, e.g. TBT

3.1 **Previous sediment investigations**

Several investigations have been undertaken previously to assess the contamination of the marine sediments in Port Kembla Harbour. These investigations are summarised below including the samples taken, the exceedances/non-exceedances reported and the recommendations and conclusions made.

3.1.1 Coffey Geotechnics/ Douglas Partners (2002/2003) Sediment Quality Investigation

Location Port Kembla Harbour

Scope /To determine the toxicological and physical characteristics of sediments withinobjectivesthe dredging footprint and assess the suitability for offshore disposal

SamplingSampling consisted of 74 sediment cores to a maximum of 1 m depth.Samples were taken from the Inner Harbour, Outer Harbour and 'The Cut' with
three of the samples from close to Berth 101.

Chemical testing was conducted on 39 cores and physical properties testing on 34. Chemical testing consisted of analysis for metals, PAH, TBT, nutrients, cyanide, TRH and potential acid sulphate soils. Physical properties testing included particle size analysis, percentage shell/grit and geotechnical parameters.

A second stage of testing consisted of elutriate, acid volatile sulfide / simultaneously extracted metals (AVS/SEM), and pore water testing and selection of samples for analysis for dioxin/furan and toxic characteristic leaching procedure (TCLP).

Relevant findings

The following findings were made regarding sediment contamination:

- Phenolics, OCPs (Organochlroine pesticides), PCBs (Polychlorinated Biphenol) and BTEX were below the limit of reporting (LOR)
- Cyanide was either below the LOR or <10 mg/kg
- Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Silver (Ag), total normalised PAHs and normalised TBT exceeded the National Ocean Disposal Guidleines for Dredged Material (EA 2002) (NODGDM) screening levels
- Zinc (Zn) and Napthalene exceeded the NODGDM maximum level.
- Dioxins were present in all four samples analysed
- Nitrogen and Phosphorus as (PO₄) were present
- No potential acid sulphate soil was observed.

AVS/SEM results showed that metals were potentially bioavailable in six of seven samples and porewater testing complied with guideline criteria except for all analytes except copper. The results of elutriate testing complied with ARMCANZ (2000) Cr and Zn, 25 times the dilution required.

In general sediments are well mixed with hotspots in the north west corner, Allan's Creek inflow and north end of 'the Cut'. Physical testing of sediment showed predominantly silty-clay sediments ranging from sandy-silts to silty-sandy-clay with sands and fine gravels in the Outer Harbour. Settling tests showed the majority of suspended sediment settles within 2 hours, implying limited dispersion during dredging and dumping.

Conclusions and recommendations

It was concluded that while the NODGM maximum was exceeded for a number of contaminants, these contaminants would not be released during disposal, and the bioavailability was not established. The levels of dioxins were considered to be at high risk to certain aquatic species.

The report recommended that, if required acute toxicity testing should be conducted for priority PAH, tributyltin, pesticides and PCBs. If the sediment was found to be toxic, then treatment or confined disposal was recommended to be investigated. If the sediments were at or below the 95% upper confidence limit (UCL) of the mean of the disposal site, they would be considered non-toxic and be acceptable for ocean disposal.

3.1.2 Patterson, Britton and Partners (2003) Sediment Quality Investigations After summary in (WorleyParsons 2012)

- Location Port Kembla Inner Harbour
- Scope /Determination of heavy metal concentrations in sediments and subsequentobjectivestoxicity and tributyltin analyses.
- **Sampling** Ten locations sampled for heavy metal concentrations, from the results of these four samples were submitted for toxicity testing and tributyltin analyses.

Relevant findings

The contamination assessment showed that Cu, Cr, Hg, Pb, Zn and TBT were above guideline screening levels. Organic contaminants were generally low and PAH concentrations were all below the guideline upper level. In all sediments pesticides except methooxychlor were below analytical detection limits. PCBs were below guideline screening levels in all except one sample. The toxicity testing showed that sediments were toxic to juvenile amphipod in all four samples measured, and to benthic algae in three of the four samples measured.

Conclusions and recommendations

Patterson Britton and Partners (2003) concluded that the toxicity of Port Kembla sediments is caused by metal contaminants, in particular zinc. The levels of Dioxins, total petroleum hydrocarbons (TPHs), BTEX and cyanide reported by Coffey (2002) were interpreted as insufficiently high to be the cause of the observed toxicity. The sediment that was tested for toxicity were deemed not suitable for unconfined sea disposal in accordance with NODGDM.

3.1.3 SMEC (2011) Port Kembla Outer Harbour Reclamation - Phase 2 Factual and Interpretive Report (SMEC 2011)

Location	Port Kembla – Outer Harbour reclamation area
Scope / objectives	Geotechnical investigation in the outer harbour to support reclamation works

Sampling Drilling of 26 over water boreholes for geotechnical purposes

Relevant findings

SMEC (2011) provided a summary of historical information relating to the outer harbour reclamation area. In summary the following points are noted:

- Planning for outer harbour reclamation commenced in early 1990's when larger port
 operations were almost exclusively performed in the inner harbour
- Following identification of the reclamation footprint, the area was subject to disposal of dredge spoil that could not be taken out to sea for unconfined sea disposal
- Dredge spoil was deposited in what had been identified as the footprint of future reclamation, resulting in an estimated minimum of 460,000 m³ of dredged slag and spoil from the inner harbour being deposited in the outer harbour.
- In 2008, a major review of development options for the outer harbour was undertaken, resulting in the development of a new strategy for development of the outer harbour

SMEC (2011) provides a summary of dredge campaigns completed between 1994 and 2008 which resulted in the deposition of sediments within the outer harbour reclamation area, including approximately 45000 m³ of uncrushed blast furnace rock slag which was deposited as part of the 2006 major inner harbour dredging and deposition campaign and used to construct a containment bund which was subsequently capped and backfilled with 165,000 m³ of dredged clay materials from the inner harbour.

3.1.4 Patterson, Britton and Partners (2005) Sediment quality sampling for dredging and disposal after summary in (WorleyParsons 2012)

Location	Port Kembla – Eastern Basin No.3, Western Basin Multipurpose Berth No. 4
Scope / objectives	Assess sediment quality for dredging and disposal relating to the creation of Eastern Basin No.3 and Multipurpose Berth No.4 in the western basin
Sampling	Coring and sampling was undertaken to the full extent of dredging

Relevant findings

Two sediment units were identified, an overlying soft clay unit and an underlying unit of stiff clay. The overlying clay contained concentrations of Nickel (Ni), Cd, Cr, Cu, Pb, Hg, Zn, PAHs and TBT above the NODGDM screening levels, the concentrations of which generally increased with depth. Typical values for OCPs and PCBs were less than laboratory detection levels.

Patterson Britton (2005) reported that the underlying clay unit was uncontaminated.

Conclusions and recommendations

From the results of the contamination assessment completed by Patterson and Britton (2005), toxicity testing was not deemed necessary.

3.1.5 AECOM (2010) Sediment Investigation

Location Port Kembla Outer Harbour

Scope /The report consists of a review of previous investigations, collection ofobjectivessamples from anoxic and oxidic sediment layer in the dredge footprints and
the underwater emplacement area. The objective being to produce a risk
assessment for human health and ecological risk of sediment and
groundwater contamination including maps of the distribution of sediment
contamination.

Sampling Samples were collected from 33 locations in the container berth dredge area to maximum depth of 2m and from ten locations in the underwater emplacement area.

Samples were also collected in two locations between the emplacement area and the multipurpose berth. Oxidic sediment was sampled in 30 locations, six of which were near the stormwater outlet and seven near the creek discharge into the harbour. Water samples were taken from the inner and outer harbour, three at high tide and three at low tide. Samples were also taken for elutriate testing.

Relevant findings

Sediments were considered to be typical of estuarine sediment consisting of silty clays with some sands with the below results:

- Heavy metals were reported in the majority of samples, with concentrations exceeding the nominated screening levels.
- TPH in the volatile fraction C₆-C₉ was reported at concentrations less than laboratory LOR for all 72 samples

- TPH in the fraction C₁₀-C₃₆ was reported at concentrations greater than NSW EPA (1994) in 12 of 72.
- BTEX was reported at concentrations below laboratory LOR in all samples
- Total PAHs did not exceed ISQG high or SIL₄ (NEPC 1999). 47 samples exceeded the ISQG-low.
- Total cyanide was reported at concentrations greater than laboratory LOR in 1 of 13 samples
- TBT was reported at concentrations greater than ISQG-low in 15 of 91, 2 of 91 greater than the ISQG-high
- PCBs and OCPs were less than LOR in all 35 samples
- TOC ranged from 0.03% to 40.1%, mostly in the expected range for estuarine sediments (2-8%).
- Suspension peroxide combine acidity and sulphur (SPOCAS) assessment for acid sulphate soils all above the ASSMAC (1998) action levels in the anoxic layer.

In elutriate tests of 51 samples Cu, vanadium (V), zinc and arsenic (As) exceeded the ANZECC (2000) in one or more samples. However, PAH and Phenols were all less than the laboratory LOR.

In six harbour water samples copper exceeded the ANZECC (2000) in one sample and cadmium in two. All other heavy metals and arsenic were below the ANZECC (2000) level in all samples. OCPS, Phenols and PCBS were not detected in any sample and total PAH was below the assessment criteria, cyanide was below the laboratory LOR. The harbour water was likely influenced by freshwater as seen in the low TDS values of 2 - 20 mg/L

Conclusions and recommendations

AECOM (2010) concluded that there was heavy metal contamination across the majority of the dredge footprint with the highest concentrations in the upper metre. PAH contamination was reported across the majority of the dredge footprint in shallow sediment with the highest concentrations in the emplacement area. TBT contamination was confined to the southern end of the container berth dredge area. SPOCAS analysis indicated PASS at 0 - 3.3 m.

Elutriate testing indicated the impact of As and Cu during dredging and reclamation could exceed the ANZECC (2000) 95% Marine trigger values. However, the high values coincide with 'hot spot' materials so are considered unlikely to have a significant impact on the receiving environment.

The report recommended the preparation of a Dredging Environmental Management Plan (DEMP) for sediments to be dredged and placed in the reclamation area with a Surface Water Management Plan in place until the reclamation area was paved. Mitigation measures would be outlined in the DEMP to be to be put in place during dredging to minimise impact on the receiving environment. It was also recommended that a harbour water quality and turbidity monitoring plan should be developed along with an acid sulphate soil management plan prior to dredging and reclamation. If the risk assessment determined that the contamination hotspots present an unacceptable risk a remedial action plan (RAP) should be prepared.

The sediments were considered likely to be able to be managed using typical dredging technologies and standard mitigation measures. It was recommended that a further sediment investigation should be conducted in the area north and south of the Gateway Berth and south of the northern breakwater, as further dredging would be required.

3.1.6 WorleyParsons (2012) Dredge Spoil Contamination Assessment – Stage 2 DSI

Location Berth 101, Port Kembla Harbour

Scope / The objective of the study was to provide representative sediment quality data objectives for the proposed dredge footprint. Specific objectives included the assessment of physical and chemical properties to inform the dredge methodology and to determine the suitability of untreated materials for reuse and/or disposal options through their physical and chemical properties. The report included assessment of the impacts from dissolved contaminants during dredging and disposal and recommending the testing requirements of cement stabilised material during a dredging and stabilisation trial.

Sampling 13 vibracore cores were collected and sampled.

All samples were analysed for suite of metals, PAHs and TOC. TBT analysis was conducted on 50% of samples and 10% of samples were analysed for dioxins /furans, PCBs, organochlorine and organophosphate pesticides, phenols, BTEX, cyanide, TPH/TRH and nutrients.

Relevant findings

The sediments were divided into upper soft silty clays and underlying stiff clays. The upper soft silty clays contained levels of Cd, Cu and Pb which exceeded the NAGD maximum levels.

Based on information reported by Worley Parsons (2012), results of sediments samples collected from the upper soft silty clays were summarised as follows:

- Phenolics, pesticides, and PCBs were reported below laboratory LOR
- Sb, Ag, and TPHs were below NAGD screening levels
- Total PAHs exceeded the NAGD screening levels in six of 50 samples. Median and 95% UCL of the means total PAH concentration were above NAGD, but below SQG-high value
- Low concentrations of BTEX were reported
- Individual concentrations of As above NAGD. 95% UCL of the mean, below the screening level.
- Most individual and 95% UCL of the mean were above NAGD screening level for Cd, Cr, Cu. Pb, Ni, Hg and in some samples Cd, Cu and Pb exceeded the NAGD maximum levels.
- Zn, majority of individual and the 95% UCL of the mean exceeded the NAGD max level.
- TBT levels above NAGD screening in four of 26 samples and above the SQG high value for three. Median and 95% UCL of the mean were above the NAGD screening level but below the SQG-high value.
- TOC generally less than 14% with exception of four samples.
- Toxic Equivalent Quantity_{0.5LOR} (TEQ_{0.5LOR}) for all seven dioxin samples exceeded the Canadian Council of Ministers of the Environment (CCME 2001) ISQG. Six of the seven and the median TEQ_{0.5LOR} exceeded the CCME (2001) PEL.

The underlying stiff clays reported levels of As, Cd and Ag below the laboratory LOR and all other contaminants were below the NAGD (2000) screening levels.

Samples were elutriate tested and for those analytes which exceeded the NAGD (2009) guidelines the concentration of dissolved metals was below the ANZECC/ARMCANZ (2000) at 95% level and 99% where available.

Testing for bioavailability showed that whilst total As, Ni, Hg exceeded NAGD (2009) guidelines, the bioavailable fractions were below the screening levels.

When testing for acid sulphate soils approximately 50% of the samples exceeded the action criteria in Stone et al. (1998).

Conclusions and recommendations

Based on the findings of the works, Worley Parsons (2012) concluded that the elevated concentrations of contaminants in upper soft silty clays are not vertically variable and that they were unsuitable for unconfined sea disposal due to concentrations of metals, TBT and dioxins.

The upper soft silty clays were also concluded to be acid generating and would require neutralisation. The upper soft silty clays were concluded to be suitable for classification as general solid waste for disposal at a licensed facility provided that the acid generating material was neutralised. Cement stabilisation was determined to be appropriate to minimise potential leaching of contaminants and neutralise acid generating capacity.

Consideration was also made for onsite reuse at an industrial land use area based on the results of TCLP extraction and analyses. Worley Parsons (2012) noted that if materials were reused in an industrial land use area, the soft silty clays would be treated or capped to limit exposure pathways. Mean dioxins were within the range for Australian soils and below the remediation range and TBT concentrations were below the conservative upper sediment limits and sediment leaching values for free-reuse land use criteria.

The report recommended that testing for leaching properties and net acid generating capacity be conducted prior to dredging, and that an assessment of ambient contaminant concentrations and pH in groundwater be conducted to assess for the potential of zinc and manganese to leach into untreated materials.

3.1.7 Geochemical Assessments (2013) Pilot sediment investigation for potential maintenance dredge areas

Location Port Kembla Inner Harbour

Scope /The objective of this investigation by Geochemical Assessments (2013) was toobjectivesidentify any significant changes to contamination since 2002/2003 and to
determine the spatial distribution of key contaminants

Sampling Sampling from 27 locations within the Inner Harbour consisting of 23 surface sediment samples and four cores. The samples were analysed for: Ag, As, Cd, Cobalt (Co), Cr, Cu, Hg, Manganese (Mn), Ni, Pb, Antimony (Sb), Selenium (Se), V, Zn, TBT, PAHS, TPH, TOC, grainsize and acid sulphate soil. Elutriate and toxicity testing for selected contaminants of concern was also conducted

Relevant findings

The key exceedances in sediment were found:

- Cd, Cr, Cu, Hg, Pb, Zn, total PAHS and TBT which all exceeded the NAGD (2009) screening levels
- Cu, Pb, Hg, Zn and TBT exceeded the NAGD (2009) by more than two times.

- Ag, As, Ni, TPH below respective screening levels.
- Sb below LOR.

Of ten elutriate samples, four exceeded the ANZECC/ARMCANZ (2000) for Cu, two for Fluranthane, and one for Phenanthrene, Anthracene and Benzo(a)pyrene. However, Geochemical Assessments (2013) noted that the contaminants are expected to undergo a dilution factor of more than 100, so elutriate test values were not considered of concern.

In regards to bioavailability the concentrations of Cu, Pb, Zn and Cd exceeded NAGD (2009) screening levels in a number of samples. The 95% UCL of bioavailable concentration of trace metals suggested AVS/SEM, pore water and/or toxicity testing was required.

Conclusions and recommendations

Based on the findings of the works, Geochemical Assessments (2013) concluded that there was no area in the Inner Harbour where all COPCs are below the NAGD screening. The sediments in Port Kembla Harbour were classified as suitable for offshore disposal with regards to metals but additional testing would be required for TBT and PAH.

The report recommended that the harbour should be divided into dredge management units and that any sediments unsuitable for offshore disposal should be classified as Restricted Soils¹ Waste under NSW Waste Guidelines (DECC 2009). A recommendation was also made to conduct further sampling and analyses for TBT and PAH to the depth of proposed dredging.

3.2 Summary previous investigations

Based on the information obtained during the background information review, the following points are noted:

- Commonly two main sedimentary units were identified with a soft silty clay layer overlying a stiffer clay layer.
- The upper soft silty clays were contaminated throughout all sampling areas.
- Heavy metals commonly exceeded the screening levels for cadmium, chromium, copper, lead, nickel, mercury and zinc.
- Tributyltin, dioxins and PAHs were reported above the nominated guidelines in several studies
- A number of dredge campaigns have been completed since 1994 which have resulted in the deposition of sediments within the outer harbour reclamation area, including approximately 45000 m³ of uncrushed blast furnace rock slag which was deposited as part of the 2006 major inner harbour dredging and deposition campaign

¹ The DECC (2009) Waste Classification Guidelines have since been superseded and the restricted waste classification is no longer relevant

4. Methodology

The sampling strategy for this work was developed with reference to the approach outlined in the NAGD (2009). GHD notes the current proposal is to dispose of sediments from the dredge footprint in the Outer Harbour.

4.1 Sediment sampling event

Fieldwork for sediment sampling was undertaken on 03/10/18 and 04/10/18. The investigation area incorporated two sampling areas. The first encompassing the waters off Berth 101 and the second the reclamation area in the outer harbour, to the south-east of Berth 101. These sampling areas are shown in Appendix A, Figure 1 and Figure 2, respectively.

Vibracoring on 3 October 2018 was undertaken under overcast conditions with occasional light rain and light winds.

As a result of weather conditions, the sampling approach was revised for the second day of sampling as vibracoring was not considered a safe option due to heavy rain conditions. Hand coring on 4 October 2018 was undertaken under overcast conditions with heavy rain and moderate winds.

Drilling and sediment sampling were conducted in accordance with GHDs standard operating procedures. Vibracoring and hand coring were conducted on 3 and 4 October 2018 by divers and drillers from McLennans Diving Service with drilling completed from a barge operated by Polaris Marine, accompanied on 3 October 2018 by an environmental scientist from GHD.

Location	Area	Date of coring	Core length (m)	Core casing material	Coring method
SED01	Berth 101	04/10/18	0.67	Aluminium	Hand push-core
SED02	Berth 101	04/10/18	0.67	Aluminium	Hand push-core
SED03	Berth 101	04/10/18	0.67	Aluminium	Hand push-core
SED04	Berth 101	03/10/18	2.65	Steel	Vibracore
SED05	Berth 101	03/10/18	2.87	Steel	Vibracore
SED06	Berth 101	03/10/18	4.4	Steel	Vibracore
SED07	Berth 101	04/10/18	0.67	Aluminium	Hand push-core
REA01	Reclamation area	03/10/18	3.6	Steel	Vibracore
REA02	Reclamation area	03/10/18	3.45	Steel	Vibracore

Table 1 – Summary of cores

4.2 Sediment sampling and core logging methodology

Sampling locations were selected at random from a grid of the area for the area of Berth 101 and to target the outer edge of the reclamation area.

SED04, SED05, SED06, REA01 and REA02 were sampled using a vibracore from a barge. Upon extraction, cores were sealed and made airtight for transport. Cores SED01, SED02, SED03 and SED07 were sampled by divers pushing an aluminium tube into the upper layers of sediment.

Cores were cut open at McLennans Diving Service facility and sampled by an environmental scientist from GHD.

As soon as cores were opened a phot-ionization detector (PID), fitted with a 10.6eV lamp and calibrated with isobutylene gas at a concentration of 100 ppm, was run along the length of the core as per GHD's standard operating procedure (SOP). The instruments calibration certificate is provided in Appendix E. PID readings are presented on the bore hole logs, however due to the time taken to cut open each core these results should be treated as evidence of deviation from background rather than true readings.

Sub sampling comprised:

- One subsample over a 0.1 m interval at 0.5 m increments along the entirety of the core e.g. 0.0 m to 0.1 m; 0.5 to 0.6 m.
- A bulk homogenised samples representing a 0.5 m interval at 0.5 m increments along the entirety of the core, e.g. 0 m to 0.5 m; 0.5 m to 1.0 m, as per the NAGD (2009).

Samples were collected in 250 ml glass sample jars and filled to the brim and sealed with Teflon lined caps to lower the potential for loss of volatile contaminants. Approximately 100 g of sample was collected for acid sulphate soil analysis and sealed in designated zip lock bags. Approximately 500 g of sediment was collected and sealed in designated zip lock bags for particle size distribution analysis. When sampling, sediment that had been in contact with the core casing was avoided. Samples were stored on ice immediately after being sampled.

The following samples were submitted to ALS (the primary laboratory) for analysis:

- From all cores over 1m two samples for chemical analysis and particle size distribution. One at 0.0 m to 0.5 m and one from either 1.0 m to 1.5 m or 2.0 m to 2.5 m.
- For cores under 1 m, a sample was submitted to represent 0.0 m to 0.5 m and one for the remainder of the depth of the core, e.g. 0.5 m to 0.65 m. the remainder of the samples were placed on hold with the primary laboratory.
- From all cores three samples were submitted to the primary laboratory for potential acid sulphate soil analysis.

Quality control samples were taken to represent 10% of the samples collected. Triplicate samples incorporating the sample, a field split and a field duplicate. The field duplicates were labelled FD01 to FD08 and the field splits FS01 to FS08. Samples FD01 to FD08 were sent to the secondary lab for analysis. Of the triplicates sampled a number were selected for analysis to represent 10% of the samples analysed, the remainder were placed on hold.

Rinsate samples were taken from the trowel used for sediment sampling, for confirmation of correct decontamination protocol. One rinsate sample was taken for each day of sediment sampling (two in total).

For each day of sampling a trip spike and trip blank was also analysed (two in total). The test reports, chains of custody (COC), and sample receipts are provided in **Appendix E**.

4.3 Data evaluation

Analytical results were compared against the nominated guidelines as outlined in Section 1.4.

4.3.1 Data normalisation

Most natural and anthropogenic substances, including metals and organic contaminants, show a higher affinity to fine grained particulate matter than coarse fraction sediments, with organic matter and clay minerals generally exhibiting the strongest adsorption capacity for contaminants (OSPAR, 2001)².

Analysis of the whole sediment (as undertaken in this investigation) provides an indication of the distribution of contaminant concentrations in bedded sediments. If sediments within a given area are predominately fine grained, the influence of grain size distribution is of minor importance, however in areas where grain size varies considerably, the distribution of contaminants will be closely related to the distribution of fine grained sediments, obscuring the true spatial distribution of contaminants (AMPS, 2004)³.

Two different approaches are commonly used to correct for variable sediment composition:

- Contaminant concentrations may be normalised using components of the sediment that represent its affinity to bind contaminants (such as organic matter). Total Organic Carbon (TOC) is one of the most widely used 'normalisers' for organic contaminants.
- Isolation of the fine fraction sediments (<63 µm) by sieving for physical grain size normalisation, effectively removing the coarse grained particulates which display a lower affinity to bind anthropogenic contaminants.

The objective of using normalisation techniques is to reduce the variability between samples arising from differences in sediment properties, such as grain size distribution. However, it is noted that the correlation between contaminant and co-factor concentrations may be weak or absent in some areas (OSPAR, 2009).

For organic contaminants, values are normalised to 1% organic carbon, as recommended in ANZECC/ ARMCANZ (2000). If the sediment organic carbon content if markedly higher than 1%, ANZECC/ARMCANZ (2000) recommends that the guideline values should be relaxed owing to the presence of additional carbon binding sites which act to reduce the contaminants bioavailability. For the purpose of this data, the following points are made:

- Where TOC was less than 1%, normalisation was not required and the actual reported concentration of organic contaminants has been used.
- Where TOC was greater than 1%, normalisation of the total PAH concentration was undertaken and the normalised concentration was used in statistical calculations. Calculations used in normalising the data were as follows:
 - Where TOC is greater than 1% but less than 10%, the concentration was divided by the TOC.
 - Where the TOC is greater than 10%, the concentration was divided by 10

4.3.2 Calculation of 95% Upper Confidence Limit

In accordance with the requirements of the NAGD (2009), the upper 95 per cent confidence limit (95% UCL) is used to determine compliance with the screening levels.

² OSPAR (2009) Update of JAMP guidelines for monitoring contaminants in sediment: Technical annex on normalisation of contaminant concentrations in sediment.

³ AMPS (2004) Discussion document on Sediment Monitoring Guidance for the EU Water Framework Directive, Version 2 May 2004

5. Results

5.1 Subsurface conditions

5.1.1 Berth 101

Logs of the cores taken are presented in Appendix C and particle size distribution analysis is presented in Table B1, Appendix B. In the sediments off Berth 101 there were typically two types of sediment with some variation within the stratigraphy.

Upper silty clay

The upper parts of all cores were comprised of a unit of black-brown clayey silt mud ranging from very wet to saturated. This mud unit ranged from 0.2 to 0.7 m in depth. This mud gradationally overlies one or more units of silty clays categorised under the Unified Soil Classification System (USCS) as MH – CH some with traces of sand sized material. The upper silty clays were found in the entirety of cores SED01, SED02, SED03 and SED07 and to depths of 2.3 m to 4.45 m in SED04, SED05 and SED06.

Proportions of clay varied from 19 % to 26% and silt from 34% to 63%. Commonly the coarser material present in the cores was coal based material ranging from fine sand to coarse gravel in size with occasional larger coal waste fragments. Various units were described with indistinct boundaries defined by changes in firmness, water content and sand quantity. The proportions of sand varied from 8 % to 38% and only SED01_0.0-0.5 contained gravel above the LOR. The black colouring of the cores was attributed to the presence of coal and all cores had a hydrocarbon odour ranging from weak to strong.

Lower units

Cores SED04, SED05 and SED06 refused at bedrock. The bedrock was highly weathered orange-brown sandstone with softening of the rock at the boundary. In SED04 and SED05 this bedrock was overlain by a thin unit of clay, from 0.22 m to 0.35 m thick, that differed from the upper silty clay units, primarily in its firmness; being firm and containing fragments of the underlying weathered sandstone with no odour and staining as signs of contamination and no coal refuse found.

5.1.2 Disposal area

The two cores collected from the reclamation areas (REA01 and REA02) differed stratigraphically from those in Berth 101 and from one another. Both cores refused at an unidentified surface at a depth of approximately 3.5 m below the seabed.

The cores were predominantly black-brown clayey silt, although sand was measured at up to 80% of the grains. The majority of the sediments were classified as MH under the USCS.

A moderate hydrocarbon odour was noted throughout REA01. Sediments at REA02 varied from having no odour to a weak hydrocarbon odour. Anthropogenic inclusions were noted in sediments at REA01 including coal waste material, wood and concrete fragments interpreted as fill including a 10 cm layer of coarse coal waste.

REA02 featured two lower units that were distinct from the overlying units; the uppermost a sand unit with characteristics typical of a marine sand and the lowermost very stiff clay, both with no odour. The lowermost unit of REA01 has a poorly defined boundary to the overlying silty clay and consisted clayey sand, with well-rounded, cobble sized pieces of concrete.

5.2 Data validation

5.2.1 Laboratory analysis

Sediment samples were transported in ice cooled chests from the sampling location (McLennans Diving Services, Banksmeadow, NSW) to the primary laboratory, ALS Environmental, Smithfield, NSW, under chain of custody conditions. Inter laboratory duplicates were forwarded to Eurofins|MGT laboratory, Lane Cove, NSW. A copy of the chain of custody for all batches is attached (**Appendix E**).

The laboratories selected to carry out analyses are NATA accredited for the analyses performed. Test methods are listed on the attached laboratory reports (Appendix E)

5.2.2 Field and laboratory quality control assessment

In order to validate the accuracy and validity of soil sampling results, a range of field and laboratory quality control (QC) samples were collected and assessed during the investigation.

- Field duplicates (Appendix B, Table B5): Within the two duplicates analysed, an RPD of 137% was recorded for Chromium Reducible Sulphur, exceeding the adopted limit (i.e.
 <30% for inorganics, <50% for organics or no limit if the result is less than 10 times the limit of reporting). Chromium, vcopper, lead nickel and zinc all exceeded the criteria of <30% in one duplicate. This result is likely reflective of the heterogeneity of the deposits, which is common in fill so the variability is not likely to affect the conclusions of this report.
- Interlab duplicate (Appendix B, Table B5): No exceedances of the adopted RPD limits were recorded for the interlab duplicate.
- The results of the rinsate samples (RN01_1 and RN02) showed the rinsates were below the laboratory limit of reporting for all analytes, thus validating the efficacy of the decontamination protocol.
- Laboratory control spikes: All recoveries were within the laboratory control limits.
- Matrix spikes: Cyanide recorded a recovery of 60% for report 621469 and TBT a recovery of 53.7 % for report ES1829588, outside the lower control limit of 70%. Laboratory blanks were all below the limit of reporting.
- No holding time exceedances were reported.
- Trip blank and trip spike results were within adopted control limits.
- QC sample outliers exist for Phenols and TRH semi-volatiles in water matrix. These correspond to rinsate samples, the results of which are all below the LOR.
- PID calibration passed and was within manufacturer's specifications. A copy of calibration certificates are presented in Appendix D.
- Laboratory duplicates are all within accepted limits.
- Insufficient sample was available for dioxins analysis for REA02_2.0-2.5, therefore REA02_2.0-2.1 was analysed for dioxins.

GHD considers that the laboratory QC results are representative of the soil conditions encountered at the locations sampled and therefore acceptable for the purposes of interpreting and verifying the analytical results of this assessment.

5.3 Analytical results summary

The laboratory analytical results for marine sediment are summarised in Appendix B. Original laboratory reports are included in Appendix E. Exceedances of the nominated screening levels were identified and are highlighted in Table B2, Table B3 and Table B4 (Appendix B).

The results of the sediment sampling program for the dredging area and disposal area are presented in Sections 5.1.1 and 5.3.2. Acid sulfate soil results are reported in Section 5.3.3.

5.3.1 Dredge footprint - Berth 101 sediments

Seven sampling locations were completed within the dredge footprint off Berth 101. Analytical data was reviewed with reference to the screening levels (ISQG trigger value) presented in Table B2 (Appendix B) of the NAGD (2009) and the ANZECC (2000) ISQG. As outlined in the NAGD, the 95% UCL was used to determine compliance with the screening levels.

As outlined in Section 4.3.1, organic compounds were normalised to 1% TOC as per the NAGD (2009). For the purpose of comparing organic data against the relevant screening levels, the 95% UCL of the normalised data set was applied.

Heavy metals in sediments

Concentrations of metals in sediments in the proposed dredging footprint at Berth 101 were generally consistent across the proposed dredging area, with no obvious hotspots of heavy metal contamination identified.

The depth of sampling for four of the seven locations was limited due to weather conditions and the need to switch from vibracoring to hand cores. Hand core locations were limited to a depth of approximately 0.7 metres. Of the three vibracore locations (SED04 to SED06), no obvious trend in heavy metal concentrations with depth was noted.

The 95% UCL average heavy metal concentrations in sediment samples from the proposed dredging area at Berth 101 were reviewed with reference to the screening levels (ISQG trigger value) presented in Table B2 (Appendix B) of the NAGD (2009). Analytical results are reported in Table B2 (Appendix B) and summarised in Table 2.

95% UCL average concentrations of chromium (Cr), copper (Cu), lead (Pb), mercury (Hg) and nickel (Ni) were reported above the NAGD (2009) screening level (SQG low). The 95% UCL average concentrations of zinc (Zn) was above the SQG high values presented in Table 4 of NAGD (2009).

In general, heavy metals results were generally consistent with those reported by Worley Parsons (2012) during the sediment sampling program adjacent to Berth 101.

Heavy metal	SQG Low	SQG HIGH	Minimum (mg/kg)	Maximum (mg/kg)	95% UCL ^(a) (mg/kg)
As	20	70	9	21	18.82 (3.49)
Cd	1.5	10	ND	2	1.26 (0.61)
Cr	80	370	79	104	94.86 (9.24)
Cu	65	270	67	338	258.9 (73.48)
Pb	50	220	145	236	196.72 (25.57)
Hg	0.15	1	0.2	0.6	0.46 (0.13)
Ni	21	52	18	24	21.5 (2.25)
Zn	200	410	671	1120	887.8 (154.04)
NOTES					

Table 2 – Summary analytcial results – Metal concentrations at Berth 101

Heavy metal	SQG Low	SQG HIGH	Minimum (mg/kg)	Maximum (mg/kg)	95% UCL ^(a) (mg/kg)
(a)	95% UCL calculated using ProUCL (Standard Deviation). Where concentration reported below the PQL, a value of half the PQL was used to calculate the 95% UCL				
BOLD	95% UCL average concentration exceeds the SQG low				
BOLD	95% UCL average concentration exceeds the SQG high				

Elutriate testing is used to assess the potential effects of dissolved contaminants in the water column during dredging and disposal. Bioavailability testing provides an indication of the amount of a contaminant which may be available for update by biological organisms, particularly benthic or sediment ingesting organisms following disposal of the sediments.

Elutriate testing and bioavailability testing was beyond the scope of the current investigation. However, as outlined in Section 3, elutriate testing has been completed within the Port Kembla harbour by others during previous sediment investigations including:

- Coffey (2003), completed a program of elutriate testing for metals, PAH and TBT and bioavailability testing for metals. The results of bioavailability testing indicated metals were potentially bioavailable and porewater analyses indicated copper was bioavailable.
- The results of Worley Parsons (2012) are summarised as follows:
 - Concentrations of TPH, PAH and TBT below the limit of reporting in elutriate samples, indicating these compounds are not readily mobilized into the water column following disturbance.
 - In all instances where metals were reported in sediments at concentrations above the NAGD (2009) screening levels (such as cadmium, chromium, copper, lead, nickel, zinc and mercury), concentrations in the elutriate sample were below the ANZECC trigger levels for both the 95% and 99% species protection levels.
 - Some heavy metals, including iron, manganese and arsenic were reported in elutriate samples at concentrations above the ANZECC 95% trigger level however the concentration of these parameters in sediments were either below the NAGD (2009) screening level or sediment data was not available.
 - The bioavailable fraction of some heavy meals, including cadmium, chromium, copper, lead and zinc were above the NAGD (2009) screening levels
- AECOM (2010) and Geochemical Assessments (2013) reported concentrations of some heavy metals, including copper, zinc and arsenic, at concentrations which exceeded the ANZECC (2000) screening levels.

Noting that the results of the sediment sampling completed during the current investigation are largely consistent with those reported during previous investigations, the findings of the elutriate testing completed during those works are likely representative of the current data set.

Concentrations of TRH and BTEX

Concentrations of volatile TRH in the fraction C_6 - C_{10} and BTEX were reported below the LOR in all samples selected for analysis.

All samples reported detections of TRH in the fraction C_{16} - C_{34} , with concentrations ranging from 200 mg/kg to 900 mg/kg. With the exception of one sample (SED03_0-0.5), all samples reported detections of TRH in the fraction C_{34} - C_{40} , with concentrations ranging from 140 mg/kg to 320 mg/kg.

NAGD (2009) presents a screening level of 550 mg/kg for total petroleum hydrocarbons (TPH). The concentration of TPH in the fraction C_{10} - C_{36} (normalised to 1% TOC) ranged from below the

limit of reporting to 240 mg/kg with a 95% UCL average of 123.83 mg/kg (standard deviation 53.33), below the SQG low of 550 mg/kg. Results were generally consistent with those reported by Worley Parsons (2012).

Concentrations of PAH

PAHs were detected in all samples, with concentrations of total PAH ranging from 30 mg/kg to 69 mg/kg. Whilst the majority of PAH's were reported in all samples, Napthalene, fluoranthene, phenanthrene and pyrene appeared as the primary PAH's within these sediments. The relative ratio of these compounds was relatively similar across all samples and no obvious trend in PAH concentration was noted where underlying samples were analysed (SED04 to SED06).

For the purpose of comparison of the data set for the berth area against the guidelines, total PAH data for the upper silty clays and underlying clay material was normalised to 1% TOC, resulting. Total PAH concentrations (normalised to 1% TOC) ranged from 1.3 mg/kg to 12.7 mg/kg with a 95% UCL average of 7.53 mg/kg (standard deviation 2.88), below the SQG of 10 mg/kg.

The data was generally consistent with that reported by Worley Parsons (2012) where the concentration of total PAH (normalised to 1% TOC) ranged from 0.6 mg/kg to 16.5 mg/kg with a 95% UCL average of 7.13 μ g/kg.

Concentrations of other parameters

- Ammonia was recorded above the LOR in four of the 12 samples collected from Berth 101 at locations SED04, SED05 and SED06, with concentrations ranging from 20 mg/kg to 110 mg/kg
- Cyanide was reported above the LOR in eight of the 12 samples, with concentrations ranging from 1 to 27 mg/kg.
- Concentrations of TBT (normalised to 1% TOC) ranged from 0.18 μg Sn/kg to 11 μg Sn/kg. A 95% UCL of 6.7 μg Sn/kg was reported, below the NAGD (2009) SQG low⁴ of 9 μg Sn/kg. TBT concentrations were lower than those reported by Worley Parsons (2012), which reported a maximum concentration of TBT (normalised to 1% TOC) of 132 μg Sn/kg and 95% UCL average of 27.4 μg Sn/kg.
- Total organic carbon ranged from 4.33 % to 11.6 %.

5.3.2 Disposal area sediments

Two vibracore locations were completed where sediments are likely to be removed for construction of the bund around the proposed disposal area. Sample locations are identified as REA01 and REA02. A total of four sediment samples (two from each location) were analysed as part of this phase of works including one sample from the surface horizon (0-0.5 metres) and one underlying deeper sample (REA01_1-1.5 and REA02_2-2.5).

Sediment materials have previously been deposited in this area as part of harbour reclamation efforts and material was observed to be stratigraphically different from sediment composition of the dredging area at Berth 101 and from each other. Calculation of 95% UCL average concentrations based on two sampling locations and the variability of material encountered was not considered statistically valid. As such individual results have been reviewed with reference to the screening criteria for the purpose of these works.

⁴ TBT concentrations reported a log normal distribution

Heavy metals in sediments

The highest metal concentrations were reported in sample REA01_1-1.5. Concentrations of lead, mercury and zinc were an order of magnitude higher in this sample than in the other three samples.

Metal concentrations at location REA01 were higher than REA02 and higher than those reported in the Berth 101 dredging area. Metal concentrations at REA02 were generally consistent with those reported in the Berth 101 dredging area.

Heavy metal concentrations in sediment samples from the disposal area were reviewed with reference to the screening levels (ISQG trigger value) presented in Table B2 (Appendix B) of the NAGD (2009). Analytical results are reported in Table B2 (Appendix B) and summarised in Table 3. In summary the following points are noted:

- With the exception of sample REA02_0-0.5, all samples reported concentrations of one or more heavy metals above the nominated screening criteria.
- Sample REA01_1-1.5 reported the maximum concentration for all heavy metals. In some instances (lead, mercury and zinc), concentrations were an order or magnitude higher than in other samples, with concentrations largely exceeding the SQG high values.

Heavy metal	SQG Low	SQG нібн	Minimum (mg/kg)	Maximum (mg/kg)	Guideline exceedances (a)
As	20	70	<5	77	SQG low 2 of 4 SQG high 1 of 4
Cd	1.5	10	<1	8	SQG low 2 of 4 SQG high 0 of 4
Cr	80	370	8	369	SQG _{low} 2 of 4 SQG _{high} 0 of 4
Cu	65	270	22	4180	SQG low 3 of 4 SQG high 3 of 4
Pb	50	220	17	1930	SQG low 3 of 4 SQG high 3 of 4
Hg	0.15	1	<0.1	3.6	SQG _{low} 2 of 4 SQG _{high} 1 of 4
Ni	21	52	3	69	SQG low 1 of 4 SQG high 1 of 4
Zn	200	410	58	12,300	SQG low 3 of 4 SQG high 3 of 4
NOTES					
(a)	a) Number of samples reporting exceedances of SQG low and SQG high guideline values from total of four samples analysed				

Table 3 – Summary analytcial results – Metal concentrations at disposal area

Concentrations of TRH and BTEX

Concentrations of volatile TRH in the fraction C_6 - C_{10} and BTEX were reported below the LOR in all samples selected for analysis.

TRH in the fraction C_{16} - C_{34} was reported in three of the four samples, with concentrations ranging from 240 mg/kg to 1,620 mg/kg, which is largely consistent with the results reported from sediments at Berth 101. With the exception of one sample (REA02_0-0.1). TRH in the fraction C_{34} - C_{40} , was reported in sediments from location REA01, with a maximum concentration of 340 mg/kg which is consistent with the results reported from sediments at Berth 101.

NAGD (2009) presents a screening level of 550 mg/kg for total petroleum hydrocarbons (TPH). For the purpose of comparison of the data against the guidelines, TPH data reported by the laboratory was normalised to 1% TOC. The concentration of TPH in the fraction C_{10} - C_{36} (normalised to 1% TOC) ranged from 80 mg/kg to 776 mg/kg. With the exception of sample REA01_1-1.5, results were reported below the nominated screening criteria of 550 mg/kg.

Concentrations of PAH

PAHs were detected in all samples, with concentrations of total PAH ranging from 1 mg/kg to 33 mg/kg. The results were largely consistent with those reported for the dredging area off Berth 101, with Napthalene, fluoranthene, phenanthrene and pyrene reported as the primary PAH's within these sediments. The relative ratio of these compounds was relatively similar across all samples and no obvious trend in PAH concentration was noted with depth. PAH results at location REA01 were higher than REA02.

Sample REA01_1-1.5 reported a total PAH concentration (normalised to 1% TOC) of 11.4 mg/kg. All other samples reported total PAH concentrations (normalised to 1% TOC) were all below the NAGD (2009) screening value of 10 mg/kg.

The data was generally consistent with that reported from the dredging area at Berth 101 and during previous investigations including Worley Parsons (2012) where the concentration of total PAH (normalised to 1% TOC) ranged from 0.6 mg/kg to 16.5 mg/kg.

Concentrations of other parameters

- Ammonia was recorded above the LOR in sample REA01_1-1.5 only with a concentration of 30 mg/kg reported, lower than the ammonia concentration range reported in sediments at Berth 101.
- Cyanide was reported above the LOR in samples REA01_1-1.5 and REA02_2-2.5 at concentrations of 12 mg/kg and 3 mg./kg respectively. Cyanide concentrations were consistent with the range reported for sediments at Berth 101.
- Concentrations of TBT (normalised to 1% TOC) ranged from 0.6 μg Sn/kg to 1 μg Sn/kg, below the NAGD (2009) SQG low⁵ of 9 μg Sn/kg. TBT concentrations were generally consistent with those reported at Berth 101.
- Total organic carbon ranged from 0.67 to 3.6%.

5.3.3 Dioxins

'Dioxins' refers to a group of persistent chlorinated chemical compounds known as polychlorinated dibenzodioxins (PCDD), which share certain similar chemical structures, properties and biological characteristics, including toxicity (Mueller, et al.., 2004). Dioxins are not deliberately produced, but are released into the environment as a result of combustion activities including power generation, waste incineration, metal smelting and manufacture of some chemicals (EPHC, 2005).

Dioxins occur as a complex mixture in most environmental media and as such, toxic equivalents (TEQs) are used to assist with interpretation of data, allowing the toxicity to be expressed as a single number. TEQs are calculated by normalising individual compounds to 2,3,7,8-tetrachlorodibenzo-p-dioxin, the most toxic PCDD. The total toxicity of any mixture is then expressed as the sum of the individual TEQs (Mueller, et al., 2004)

⁵ TBT concentrations reported a log normal distribution. Based on the available data set, calculation of the 95% UCL average for underlying clay horizon was not considered statistically valid

Sediment samples collected from both the dredge footprint at Berth 101 and the disposal area were analysed for dioxins. The results are reported in full in the laboratory report provided in Appendix E and summarised in this section. Both the World Health Organisation (WHO) TEQ and International TEQ (I-TEQ) are reported by the laboratory and summarised in Table 4. For the purpose of this report, the following TEQ values were applied

- WHO TEQ (0.5 LOR) where value of half LOR was used to calculate the TEQ where results were reported by the laboratory as non detect
- I-TEQ (0.5 LOR) where value of half LOR was used to calculate the TEQ where results were reported by the laboratory as non detect

Ten samples collected from the dredge footprint at Berth 101 and four samples from the disposal area were analysed for dioxins. Consistent with previous datasets, results from all samples were strongly dominated by OCDD (octachlorodibenzo-p-dioxin) with concentrations of OCDD reported orders of magnitude higher than the LOR and other dioxin-compounds within the same sample.

The results were relatively consistent across all samples and between the two sampling areas. Two samples per location were analysed from vibracore locations. The data from sediment cores at Berth 101 reported a marginal decrease in dioxin levels between surface (0-0.5) samples and underlying samples collected from either the 1-1.5 or 2-2.5 metre horizons. For the two locations completed within the disposal area (REA01 and REA02), total TEQ's were higher in deeper samples higher at both locations, with the maximum TEQ values reported in sample REA02 1-1.5.

Sample ID	WHO TEQ (0.5 LOR)	I-TEQ (0.5 LOR)				
Berth 101 Dredging Area						
SED01_0-0.5	11.7	19.26				
SED02_0-0.5	8.78	15.23				
SED03_0-0.5	16.02	22.78				
SED04_0-0.5	8.62	14.54				
SED04_1-1.5	8.47	13.65				
SED05_0-0.5	9.95	16.08				
SED05_1-1.5	8.46	13.74				
SED06_0-0.5	8.49	13.4				
SED06_2-2.5	5.1	7.26				
SED07_0-0.5	8.7	14.02				
Mean Average Total TEQ	9.4	15				
Disposal Area						
REA01_0-0.5	13.29	18.58				
REA01_1-1.5	21.82	32.36				
REA02_0-0.5	4.66	6.72				
REA02_2-2.1	9.05	14.14				
Mean Average Total TEQ	12.2	17.9				

Table 4- Dioxin summary results – Total TEQ

In general, the results of the sampling were consistent with data reported during previous investigations. The results reported by Worley Parsons (2012) are summarised as follows:

- WHO₉₈ TEQ (0.5 LOR): Mean average 15.4 and maximum 22.1
- I-TEQ (0.5 LOR): Mean 32.1 and maximum 51.1

5.3.4 Acid sulphate soils

Field screen

Samples for potential acid sulphate soil (PASS) were initially submitted to the lab for a pH field screen the results of the field screen are presented in Table B41 in Appendix B.

The results for initial pH of the sample (pH_F) range from 8.2 to 8.9. pH after digestion with hydrogen peroxide (pH_{Fox}) ranged from 5.1 to 8 with one sample with a value of 2.3. All samples showed a strong or extreme reaction with a decrease in pH for all samples ranging from 0.4 to 6.1. While a final pH of less than 3.5 is considered an indicator of potential acid sulphate soils (PASS), they cannot be excluded here as pH is often higher when samples are from a marine source.

Acid sulphate soils – Chromium Reducible Sulphur method

In order to supplement to acid sulphate soil (ASS) field screen twelve samples were selected for laboratory analyses at the primary laboratory using the chromium reducible sulphur suite (CRS). For the majority of cores a single sample was selected for ASS analyses as the intra-core coefficient of variation between both pH_F and pH_{Fox} was small. For cores where there was a large variation in either pH_F or pH_{Fox} additional samples were selected to be representative of this variation.

The results were compared to the action criteria provided in the QLD (2014) Acid Sulfate Soils Technical Manual – Soil management Guidelines V4.0 based on more than 1000 tonnes of fine texture soils to be disturbed.

The laboratory report is included in Appendix E. The results are summarised in Appendix B, Table B4.

All samples exceeded the action criteria of 0.03 % sulphur and 18 M H⁺/t in both Berth101 and the disposal area at all depths. These samples all had pHKCl of more than 8 pH units and acid neutralising capacity that ranged from 757 to 7750 M H⁺/t. The liming rates were less than 1 kg CaCO₃/t for all except one sample (REA01_2.0-2.1) which has a liming rate of 227 kg CaCO₃/t.

6. Conclusions

6.1 Summary findings

Based on the findings of these investigations, as outlined in Section 5, and subject to the limitations outlined in Section 1.5, key findings of the sediment investigations are summarised as follows:

- Two main sedimentary units were identified in the dredge footprint at Berth 101 comprising a soft silty clay layer overlying a stiffer clay layer. Sediments encountered at the disposal area were stratigraphcially different to Berth 101, predominantly comprising black-brown clayey silt. Anthropogenic inclusions were noted in sediments within the outer harbour disposal area at REA01 including coal waste material, wood and concrete fragments interpreted as fill including a 10 cm layer of coarse coal waste.
- Elevated metal concentrations were reported above the nominated screening levels in the dredge footprint at both Berth 101 and the disposal area. With the exception of one sampling location at the disposal area (REA01-1-1.5), concentrations of heavy metals were generally consistent between the Berth 101 dredging area and disposal area. Some metals, notably lead, mercury and zinc, were an order of magnitude higher in sample REA01_1-1.5 than other samples.
- Other contaminants of potential concern, including PAH, TBT and hydrocarbons reported 95% UCL average concentrations below the nominated screening levels in the dredge area at Berth 101. With the exception of one sample (REA01_1-1.5), concentrations of PAH, TBT and TPH in the disposal area were largely consistent with data reported for the dredge area. Statistical evaluation of the dataset from the disposal area was not considered valid based on the variability of material encountered and number of sampling locations and as such individual results were reviewed with reference to the screening criteria. Concentrations of PAH and TPH in sample REA01-1.1.5 exceeded the NAGD (2009) screening levels.
- Dioxin levels were largely consistent across the two sampling areas with the sediments from the Berth 101 dredge footprint and disposal area reporting WHO TEQ_(0.5 LOR) of 9.4 ppt and 12.2 ppt respectively. Whilst Australian guidelines for dioxins are not currently available, these levels are within the range of background concentrations reported for Australian sediments (Muller et al., 2004) and consistent with the mean WHO TEQ_(0.5 LOR) reported by Worley Parsons (2012) of 15.4 ppt.
- The sediment sampling program was limited owing to weather conditions and the need to revise the sampling approach during the course of the works. Whilst the depth of sampling was limited to approximately 0.7 metres for some locations, the following points are noted with respect to the vertical profile of contaminant concentrations
 - No obvious vertical trend in contaminant concentration with depth was noted in sediment cores collected from the dredge footprint at Berth 101 where shallow (0-0.5) and underlying samples were analysed.
 - Two sampling locations (REA01 and REA02) were completed within the vicinity of the disposal area, including locations targeting sediments which are likely to be removed to facilitate construction of the bund. Concentrations of contaminants of concern in REA01 were higher in the underlying sample collected from a depth of 1-1.5 whilst concentrations in sediments sampled from REA02 were relatively consistent with depth.

- Contaminant concentrations were generally consistent across the seven locations completed with the sampling area at Berth 101, with no obvious hotspots of contamination noted.
- Analytical results were generally consistent with those reported previously by others including AECOM (2010) and Worley Parsons (2012). No new contaminants of potential concern were identified at levels exceeding screening criteria during the current investigation.
- Elutriate testing was not completed during the current investigation. However, based on the comparison of data with previous sampling events, the results of elutriate testing reported by AECOM (2010), Worley Parsons (2012) and Geochemical Assessments (2013) are considered relevant to these works and likely indicative of current conditions.
- Consistent with the findings of previous investigations including AECOM (2010), Worley
 Parsons (2012) and Geochemical Assessments (2013), the results indicate the presence of
 PASS and potential acid generating capacity of the sediments.

6.2 Conclusions

Overall, the findings of the investigation indicate the presence of contaminated sediments within the proposed dredging and disposal areas. Concentrations of contaminants of concern were largely consistent across the two areas, with concentrations of heavy metals exceeding the screening criteria in both the Berth 101 dredge area and disposal area. PAH and hydrocarbons were reported above the screening criteria in one sediment sample collected from the disposal area.

With reference to potential impacts on the project, the following points are noted:

- There is the potential for mobilisation of contaminants, notably heavy metals, into the water column during dredging activities. Based on review of the information obtained during this investigation, and the findings of previous investigations, the following points are noted:
 - Elutriate testing completed by Worley Parsons (2012) indicates that whilst concentrations of heavy metals may have been reported above the screening levels in sediments, concentrations of dissolved metals in elutriate waters were below the ANZECC trigger levels for 95% protection of species.
 - Bioavailability testing indicates that some heavy metals, notably cadmium, chromium copper, lead and zinc, have the potential to be bioavailable to marine organisms within the sediments.
 - The potential bioavailability of contaminants, including detailed review of existing available data, will be considered during developing the dredge management strategy and in preparation of the dredge management plan.
- The project will involve dredging of sediments from Berth 101 and emplacement within the disposal area. Contaminated sediments will be placed within the perimeter bund of the disposal area and capped with clean sediments. Details for the management of this process will be documented in the dredge management plan.
- Dredging activities will result in the suspension of sediments, potentially remobilising contamination into the water column. Mitigation measures to minimise impacts to receiving waters may include the use of a turbidity curtain to restrict the generation of turbidity plumes and localise any water quality issues. Details of these mitigation measures, including the approach for surface water monitoring, will be outlined in the dredge management plan.
The results of the sediment sampling program indicate PASS conditions are present within the dredge footprint. An Acid Sulphate Soil Management Plan (ASSMP) will be prepared in line with the requirements of the Acid Sulphate Soils Management Advisory Committee Guidelines (ASSMAC, August 1998 and as updated). The ASSMP will be prepared to identify, manage and treat the PASS encountered during dredging to minimise the production of acid leachate. The dredging strategy will be designed to limit the timeframe for potential for oxidisation of the sediments. The potential for ASS generation would reduce greatly due to sediments being transferred to the disposal area immediately after dredging, limiting time for oxidation.

7. References

ANZECC/ARMCANZ (2000) Australian Water Quality Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, October 2000

Acid Sulfate Soil Manual (1998) prepared by the Acid Sulfate Soil Management Advisory Committee (ASSMAC 1998).

AECOM (2010) Port Kembla Outer harbour development Environmental Assessment

Coffey Geosciences (2003) Evaluation of sediment sampling and analysis, Port Kembla Port.

Commonwealth of Australia (2009). *National Assessment Guidelines for Dredging*, Commonwealth of Australia, Canberra, 2009.

Dear SE, Moore NG, Dobos SK, Watling KM and Ahern CR (2002). Soil Management Guidelines. In *Queensland Acid Sulfate Soil Technical Manual v.4.0 (2014)*. Department of Natural Resources and Mines, Indooroopilly, Queensland, Australia.

Douglas Partners (2002) Report on sediment sampling and analysis Port Kembla Report. Technical report prepared for Port Kembla Port Corporation.

EPHC (2005) National Dioxins Program: National Action Plan for Addressing Dioxins in Australia, July 2005

Geochemical Assessment (2013) *Pilot Sediment Investigations for Potential Maintenance Dredging Areas*

Mueller J, Muller R, Goudkamp K, Shaw M, Mortimer M, Haynes D, Paxman C, Hyne R, McTaggart A, Burniston D, Symons R and Moore M, (2004) *Dioxins in Aquatic Environments in Australia,* National Dioxin Program Technical Report No. 6, Australian Government Department of Environment and Heritage, Canberra

Worley Parsons (2012) Berth 101 Upgrade Project Marine Assessment Dredge Spoil Contamination Assessment - Stage 2 Detailed Site Investigation

Appendices

 $\ensuremath{\textbf{GHD}}\xspace$ | Report for Australian Industrial Energy - Port Kembla Gas Terminall

Appendix A - Figures

20	40	00	00
	Metres		
lap Projectio			
Horizonta			
Grid: GDA	1994 M	GAZone	56

Proposed Dredging Area -Sampling Grid

30/10/2018 Date

G:\21\27477\GISMaps\Deliverables\21_27477_Z008_Sampling_DredgingArea.mxd Print date: 30 Oct 2018 - 09:57

Data source: © Department of Finance, Services & Innovation 20

Paper Size ISO A4 3 30 60 90 120 Metres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

0

Australian Industrial Energy Port Kembla Gas Terminal Project No. 21-27477 Revision No. -Date 30/10/2018

Reclamation Area -Sampling Grid

G:121127477/GISMaps/Deliverables/21_27477_Z010_Sampling_ReclamationArea.mxd Print date: 30 Oct 2018 - 09:53 Data source: © Department of Finance, Services & Innovation 2017. Created by: adody

Appendix B - Summary of Lab Results

Table B1 - Summary Analytical Results - Chemistry

						1	NA							Par	ticle Size Ana	lysis						Soil B Densi
					≷ Cobbles (>6cm)	≷ Gravel (>2mm)	e Sand (0.06-2.00 mm)	e Silt (2-60 µm)	€ Clay (<2 μm)	e +75µm	e +150µm	mµ008+ \$	e +425µm	m4009+ s	e +1180µm	e +2.36mm	e +4.75mm	e +9.5mm	s +19.0mm	e +37.5mm	s +75.0mm	g/o
					/6	/0	/0	/6	/0	/0	/0	/0	/0	/0	/6	/0	/0	/0	/0	/0	/6	g/c 0.
cation Code	Date	Field ID	Sample Type	Matrix Type				1 .										·			<u></u>	
	5/10/2018	REA01_0.0-0.5	Normal	soil	<1	<1	17	61	22	10	4	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.
	5/10/2018	REA01_1.0-1.5	Normal	soil	<1	7	58	21	14	61	54	41	37	33	16	3	<1	<1	<1	<1	<1	2.
	5/10/2018	REA02_0.0-0.5	Normal	soil	<1	1	80	11	8	81	74	38	13	4	2	1	<1	<1	<1	<1	<1	2
	5/10/2018	REA02_2.0-2.5	Normal	soil	<1	3	69	16	12	69	50	12	8	6	4	3	2	<1	<1	<1	<1	2
	5/10/2018	SED01_0.0-0.5	Normal	soil	<1	11	36	34	19	45	37	29	26	22	15	9	5	<1	<1	<1	<1	2
	5/10/2018	SED02_0.0-0.5	Normal	soil	<1	<1	19	55	26	9	4	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED03_0.0-0.5	Normal	soil	<1	<1	25	49	26	15	8	4	2	1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED04_0.0-0.5	Normal	soil	<1	<1	15	63	22	7	3	1	1	<1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED04_1.0-1.5	Normal	soil	<1	<1	8	67	25	6	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED05_0.0-0.5	Normal	soil	<1	<1	12	65	23	8	3	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED05_1.0-1.5	Normal	soil	<1	<1	13	65	22	6	2	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED06_0.0-0.5	Normal	soil	<1	<1	26	53	21	18	12	7	3	2	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED06_2.0-2.5	Normal	soil	<1	<1	38	43	19	30	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
	5/10/2018	SED07_0.0-0.5	Normal	soil	<1	<1	25	53	22	19	8	3	1	<1	<1	<1	<	<1	<1	<1	<1	2
atistics																						
mber of Results					14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14 <1	2
nimum value Iximum Value						1	8	11 67	8 26	v	2 74	1	1 37	1		1						
aximum value edian Value *					<1	11			-	81 17	74	41	37	33	16 0.5	3	5	<1	<1	<1	<1	2
edian Value - A Non Detect Multipl					0.5	0.5	25	53	22	17	0	2	1.00	0.5	U.0	0.5	0.5	U.D	0.5	0.5	0.5	2.

Table B2 - Summary Analytical Results - Inorganics

								Met	als						Nutrients
					mg/kg	mg/kg	B Chromium (III+VI) b	Copper mg/kg	peaq mg/kg	Mercury mg/kg	jə Jəği Ng/kg	u N mg/kg	% Moisture (%)	ଞ୍ଚ ଦୁ ଜୁ	wð/kð Ammonia as N
EQL					5	1	2	5	5	0.1	2	5	1	1	20
NAGD 2009 - SQG-I	High Values				70	10	370	270	220	1	52	410			
NAGD 2009 - Screen	ning Level				20	1.5	80	65	50	0.15	21	200			
Location Code	Date	Field ID	Sample Type	Matrix Type											
	5/10/2018	REA01 0.0-0.5	Normal	soil	42	3	115	3,280	548	0.8	25	1,210	51.7	<2	<20
	5/10/2018	REA01_1.0-1.5	Normal	soil	77	8	369	4,180	1,930	3.6	69	12,300	38.8	12	30
	5/10/2018	REA02_0.0-0.5	Normal	soil	<5	<1	8	22	17	<0.1	3	58	23.7	<1	<20
	5/10/2018	FS08	Field_D - REA02_0.0-0.5	soil	<5	<1	4	12	10	<0.1	<2	27	18.6	<1	<20
	5/10/2018	REA02_2.0-2.5	Normal	soil	54	<1	20	309	431	0.5	13	475	23.6	3	<20
	5/10/2018	SED01_0.0-0.5	Normal	soil	15	<1	86	251	176	0.3	19	676	54.6	<2	<20
	5/10/2018	SED02_0.0-0.5	Normal	soil	19	<1	84	233	169	0.3	20	669	56.8	<2	<20
	5/10/2018	SED03_0.0-0.5	Normal	soil	18	<1	82	239	171	0.3	18	684	54.8	<2	<20
	5/10/2018	SED04_0.0-0.5	Normal	soil	20	<1	97	338	205	0.5	20	876	54.8	3	<20
	5/10/2018	SED04_1.0-1.5	Normal	soil	19	1	92	159	202	0.5	24	784	49.3	4	30
	5/10/2018	FS06	Field_D - SED04_1.0-1.5	soil	17	1	90	159	198	0.4	24	772	49.6	4	30
	5/10/2018	SED05_0.0-0.5	Normal	soil	15	<1	82	241	172	0.4	18	671	47.7	1	<20
	5/10/2018	SED05_1.0-1.5	Normal	soil	21	1	104	216	236	0.6	24	900	47.8	4	40
	5/10/2018	SED06_0.0-0.5	Normal	soil	15	2	104	157	168	0.5	21	930	48.1	4	<20
	5/10/2018	SED06_2.0-2.5	Normal	soil	9	2	85	67	145	0.2	20	1,120	37.6	27	110
	5/10/2018	SED07_0.0-0.5	Normal	soil	17	<1	79	262	175	0.3	18	675	55.3	2	<20
				Nuclear (Dec.)		-	10	10	10		15	10	10	10	
				Number of Results	14 9	/	16		16	14	15		16	10	
				Minimum Concentration Maximum Concentration	9	1	4 369	12 4180	10 1930	0.2	-	27	18.6 56.8	27	3
				Maximum Concentration Median Concentration *	18.5	8	369 85.5		1930	0.45			56.8 48.7	27	30
				* A Non Detect Multiplier of 0.5 has been applied.	10.5	2	65.5	230	175.5	0.45	20	120	40.7	4	31
				A Non Detect Multiplier of 0.5 has been applied.											
				95% UCL - Berth101	18.82	1.26	94.86	258.9	196.72	0.46	21.5	888			<u> </u>
				BOW COL BOUND	10.02	1.20	04.00	200.0	100.72	0.40	21.0	000	I	1	

Table B3 - Summary Analytical Results - Organics

					TOC	Organo Metals					BTEXN						TF	RH - NEPM 20)13					т	RH - NEPM 1	999		
					Total Organic Carbon	Tributyttin (as Sn)	Normalised TBT	Benzene	Toluene	E thylb enzene	Xylene (o)	Xylene (m & p)	Xylene Total	BTEX (Sum of Total) - Lab Calc	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	Normalised c10-C40 Total	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)	Normalised C10-C36
					%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.02	0.0005		0.2	0.5	0.5	0.5	0.5	0.5	0.2	10	10	50	50	100	100	50		10	50	100	100	50	,
NAGD 2009 - SQG-H						0.07	0.07																					
NAGD 2009 - Screeni						0.009	0.009																				550	550
ANZECC 2000 ISQG						0.07	0.07																					
ANZECC 2000 ISQG	-Low					0.005	0.005																					
Location Code	Date	Field ID	Sample Type	Matrix Type																								
	5/10/2018	REA01_0.0-0.5	Normal	soil	3.60	0.0036	0.001		<0.5	<0.5	<0.5	<0.5	<0.5	< 0.2	<10	<10	<50	<50	690	300	990	275	<10	<50	390	440	830	230.56
	5/10/2018	REA01_1.0-1.5	Normal	soil	2.64	0.0016	0.00060606	<0.2	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.2	<10	<10	90	90	1,620	340	2,050	776.52	<10	<50	1,070	740	1,810	685.61
	5/10/2018	REA02_0.0-0.5	Normal	soil	0.67	0.0007	0.00104478	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	<100	<100	<50		<10	<50	<100	<100	<50	
	5/10/2018	FS08	Field_D - REA02_0.0-0.5	5 soil	0.41	< 0.0005		<0.2	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	<100	<100	<50		<10	<50	<100	<100	<50	
	5/10/2018	REA02_2.0-2.5	Normal	soil	2.98	< 0.0005		<0.2	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	240	<100	240	80.54	<10	<50	150	120	270	90.60
	5/10/2018	SED01_0.0-0.5	Normal	soil	6.26	0.0049	0.00078275	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.2	<10	<10	<50	<50	470	200	670	107.03	<10	<50	280	280	560	89.46
	5/10/2018	SED02_0.0-0.5	Normal	soil	6.90	0.0101	0.00146377	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.2	<10	<10	<50	<50	370	140	510	73.91	<10	<50	220	210	430	62.32
	5/10/2018	SED03_0.0-0.5	Normal	soil	8.88	0.0997	0.01122748	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	200	<100	200	22.52	<10	<50	<100	<100	<50	
	5/10/2018	SED04_0.0-0.5	Normal	soil	6.92	0.0059	0.0008526	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	460	220	680	98.27	<10	<50	270	290	560	80.92
	5/10/2018	SED04 1.0-1.5	Normal	soil	7.47	0.0255	0.00341365	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	710	220	930	124.50	<10	<50	440	380	820	109.77
	5/10/2018	FS06	Field_D - SED04_1.0-1.	5 soil	7.48	0.0174	0.0023262	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	680	210	890	118.98	<10	<50	420	360	780	104.28
	5/10/2018	SED05 0.0-0.5	Normal	soil	8.76	0.0083	0.00094749	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	560	240	800	91.32	<10	<50	340	340	680	77.63
	5/10/2018	SED05 1.0-1.5	Normal	soil	7.51	0.0044	0.00058589	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	550	220	770	102.53	<10	<50	340	310	650	86.55
	5/10/2018	SED06 0.0-0.5	Normal	soil	11.60	0.0117	0.00100862	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	50	820	210	1.080	93.10	<10	<50	530	400	930	80.17
	5/10/2018	SED06_2.0-2.5	Normal	soil	4.33	0.0008	0.00018476		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	60	60	900	280	1,240	286.37	<10	<50	570	470	1,040	240.18
	5/10/2018	SED07_0.0-0.5	Normal	soil	7.79	0.0082	0.00105263	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<10	<10	<50	<50	340	160	500	64.18	<10	<50	210	210	420	53.92
L		1	1	1																			1					
				Number of Results	1	16 16	14	16	16	16	16	16	16	16	16	16	16	6 16	16	6 16	16	14	16	5 16	16	16 از	16	13
				Minimum Concentration	0.41	0.00	0.00	0.10	0.25	0.25	0.25	0.25	0.25	0.10	5.00	5.00	25.00	25.00	50.00	50	50	23	5	25	50	50	25	54
				Maximum Concentration	11.60	0.10	0.01	0.10	0.25	0.25	0.25	0.25	0.25	0.10	5.00	5.00	90.00	90.00	1,620.00	340	2050	776.52	5	25	1070	740	1810	685.61
				Median Concentration *	6.9	0.0054	0.0010	0.1	0.25	0.25	0.25	0.25	0.25	0.1	5	5	25	25	510	210	725	100	5	25	310	300	605	89
				* A Non Detect Multiplier of 0.5 has been applied.											-													
									1						1								1			1		

Table B3 - Summary Analytical Results - Organics

															PAHs										
					Acenaphthene	Acenaphthylene	Anthracene mg/kg	Benz(a)anthracene	Berzo(a) pyrene	a Berzo(b+)∦luoranthen b∦e	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	eue Clui Xeeue maj/kgm	by by e	By Fluoranthene	g Naphthalene	euene Elluorene	Ball Indeno(1,2,3- ball c,d)pyrene	E Phenan threne	eue J. J. mg/kg	PAHs (Sum of total) - 호 Lab calc	a normalisedPAHs (Sum by of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	Total 8 PAHs (as BaP pg TEQ)(half LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc
EQL					0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
NAGD 2009 - SQG-H	ligh Values				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50	50	0.0	0.0	0.0
NAGD 2009 - Screen																					10	10			
ANZECC 2000 ISQG					0.5	0.64	1.1	1.6	1.6				2.8	0.26	5.1	2.1	0.54		1.5	2.6	45	45	-	1	-
ANZECC 2000 ISQG					0.016	0.044	0.085	0.261	0.43				0.384	0.063	0.6	0.16	0.019		0.24	0.665	4	4			
										1														4	
Location Code	Date	Field ID	Sample Type	Matrix Type																					
	5/10/2018	REA01_0.0-0.5	Normal	soil	<0.8	<0.8	0.8	2.3	3.0	3.6	1.3	1.6	2.2	< 0.8	5.0	5.5	<0.8	1.4	2.8	4.2	33.7	9.36	3.9	4.1	4.4
	5/10/2018	REA01_1.0-1.5	Normal	soil	<0.5	1.0	0.8	1.1	1.4	1.8	0.6	0.8	1.1	< 0.5	2.9	11.1	0.7	0.7	2.8	3.3	30.1	11.40	1.8	2.1	2.3
	5/10/2018	REA02_0.0-0.5	Normal	soil	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	1.49	< 0.5	0.6	1.2
	5/10/2018	FS08	Field_D - REA02_0.0-0.5	soil	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	0.6	1.2
	5/10/2018	REA02_2.0-2.5	Normal	soil	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	0.8	< 0.5	< 0.5	< 0.5	0.7	2.2	0.74	<0.5	0.6	1.2
	5/10/2018	SED01_0.0-0.5	Normal	soil	<0.8	0.9	1.2	1.9	2.7	3.3	1.1	1.4	2.0	< 0.8	4.3	9.8	0.9	1.2	3.6	4.0	38.3	6.12	3.5	3.7	4.0
	5/10/2018	SED02_0.0-0.5	Normal	soil	<0.8	< 0.8	1.0	1.6	2.2	2.7	0.9	1.1	1.7	<0.8	3.6	8.5	<0.8	1.0	3.0	3.3	30.6	4.43	2.8	3.1	3.3
	5/10/2018	SED03_0.0-0.5	Normal	soil	< 0.8	< 0.8	< 0.8	0.9	0.9	1.3	< 0.8	0.9	0.9	< 0.8	1.8	2.5	< 0.8	< 0.8	1.0	1.6	11.8	1.33	1.1	1.4	1.7
	5/10/2018	SED04_0.0-0.5	Normal	soil	<0.8	0.9	1.2	2.0	2.8	3.4	1.1	1.6	2.1	< 0.8	4.5	9.9	0.9	1.3	3.6	4.1	39.4	5.69	3.6	3.9	4.1
	5/10/2018	SED04_1.0-1.5	Normal	soil	< 0.5	1.2	1.7	2.7	3.9	4.7	1.8	2.1	2.8	0.6	6.2	11.4	1.3	1.8	4.9	5.5	52.6	7.04	5.6	5.6	5.6
	5/10/2018	FS06	Field_D - SED04_1.0-1.5	soil	< 0.5	1.2	1.7	2.6	3.8	4.6	1.4	2.1	2.7	0.6	6.0	11.6	1.3	1.8	4.8	5.3	51.5	6.89	5.5	5.5	5.5
	5/10/2018	SED05_0.0-0.5	Normal	soil	< 0.5	1.1	1.6	2.6	3.5	4.3	1.3	2.2	2.6	0.5	5.5	12.7	1.2	1.8	4.6	5.0	50.5	5.76	5.0	5.0	5.0
	5/10/2018	SED05_1.0-1.5	Normal	soil	< 0.5	1.0	1.4	2.1	3.2	3.8	1.3	1.9	2.2	0.5	5.1	9.1	1.1	1.6	4.0	4.5	42.8	5.70	4.6	4.6	4.6
	5/10/2018	SED06_0.0-0.5	Normal	soil	< 0.5	1.6	2.4	3.8	5.5	6.9	2.6	3.5	4.1	0.9	8.1	11.2	1.9	3.0	6.5	7.4	69.4	5.98	8.1	8.1	8.1
	5/10/2018	SED06_2.0-2.5	Normal	soil	< 0.5	1.9	1.5	1.4	2.0	2.3	0.8	1.3	1.6	< 0.5	4.5	24.9	1.4	1.0	4.8	5.6	55.0	12.70	2.6	2.8	3.1
	5/10/2018	SED07_0.0-0.5	Normal	soil	<0.8	<0.8	1.0	1.8	2.3	2.8	1.0	1.2	1.8	< 0.8	3.7	7.0	<0.8	1.1	2.8	3.4	29.9	3.84	3.0	3.2	3.5
				Number of Results	16	6 16	5 16	1	6 1	6 16	16	6 16	5 16	6 16	16	16	16	16	16	16	5 1 ⁷	6 1/	۱۴ ذ	6 1F	ð 1
				Minimum Concentration	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
				Maximum Concentration																	1	1			1
				Median Concentration *	1	1	1	1				1	1		1	1					1	1	1	1	1
				* A Non Detect Multiplier of 0.5 has been applied.																	1	1			1

Table B4 - Summary Analytical Results - Acid Sulfate Soils

					ASS	- Field		ASS - pH	ASS - A	cidity Trail	ASS - Pot	ential Acidity		ASS - ANC				ASS -	Acid Base Acc	counting		
					박	5H-FOX	Reaction rate	oHKCI	Tirratable Actual Acidity	Titratable Actual Acidity (suffur units)	Chromium Reducible Sulfur	Chromium Reducible Sulphur (acidity units)	Acid Neutralising Capacity	Acid Neutralising Capacity (acidity units)	Acid Neutralising Capacity (suffur units)	s-Net Acidity without aNCE	s-Net Acidity without - aNCE	ANC Fineness Factor	Vet Acidity (acidity units)	Vet Acidity (sulfur units)	-iming Rate	Liming Rate excluding ANC
					pH Units	pH Units	-	pH Units	mole H+/t	%S	%S	mole H+/t	% CaCO3	mole H+/t	%S	%S	mole H+/t		mole H+/t	%S	kg CaCO3/t	
EQL					0.1	0.1	1	0.1	2	0.02	0.005	10	0.01	10	0.01	0.02	10	0.5	10	0.02	1	1
ASSMAC (1998)											0.03	18										
Location Code	Date	Field ID	Sample Type	Matrix Type																		
	4/10/2018	REA01_0.0-0.1	Normal	soil	8.7	7.6	4	8.7	<2	< 0.02	0.677	422	38.8	7,760	12.4	0.68	422	1.5	<10	< 0.02	<1	32
	4/10/2018	REA01_1.0-1.1	Normal	soil	8.8	7.5	4															1
	4/10/2018	REA01_2.0-2.1	Normal	soil	8.4	2.30	4	8.00	<2	< 0.02	6.29	3920.00	6.74	1350.00	2.16	6.29	3920.00	1.50	3020.00	4.85	227.00	294.00
	4/10/2018	REA02_0.0-0.1	Normal	soil	8.6	6.50	3	9.00	<2	< 0.02	0.11	70.00	2.65	529.00	0.85	0.11	70.00	1.50	<10	< 0.02	<1	5.00
	4/10/2018	REA02_1.0-1.1	Normal	soil	8.5	6.60	4									1	!	[1			
	4/10/2018	REA02_2.0-2.1	Normal	soil	8.4	7.8	4	1	1	1	1	1	1	1		1			1		1	1
	4/10/2018	FS03	Field_D_ REA02_2.0-2.1	soil	8.8	7.6	4	1	1							1			1			1
	4/10/2018	SED01_0.0-0.1	Normal	soil	8.2	6.30	4	8.10	<2	< 0.02	0.27	169.00	5.43	1080.00	1.74	0.27	169.00	1.50	<10	< 0.02	<1	13.00
	5/10/2018	SED01_0.0-0.5	Normal	soil	8.4	6.30	4	1	1							1			1			1
	5/10/2018	SED01_0.5-0.65	Normal	soil	8.4	6.40	4									1	!	[1			1
	4/10/2018	SED02_0.0-0.1	Normal	soil	8.2	6.30	4	8.50	<2	< 0.02	0.14	89.00	4.65	929.00	1.49	0.14	89.00	1.50	<10	< 0.02	<1	7.00
	5/10/2018	SED02_0.0-0.5	Normal	soil	8.2	6.20	4									1		(1			1
	5/10/2018	SED02_0.55-0.65	Normal	soil	8.6	6.20	4									1	!	[1			1
-	4/10/2018	SED03_0.0-0.1	Normal	soil	8.4	6.30	4	8.50	<2	< 0.02	0.13	81.00	5.14	1030.00	1.64	0.13	81.00	1.50	<10	< 0.02	<1	6.00
	5/10/2018	SED03_0.0-0.1	Normal	soil	8.4	6.30	4									1	!	[1			
	5/10/2018	SED03_0.0-0.5	Normal	soil	8.6	6.30	4															1
	5/10/2018	SED03_0.5-0.65	Normal	soil	8.4	6.40	4									1	!	[1			1
-	4/10/2018	SED04_0.0-0.1	Normal	soil	8.6	6.20	4	8.50	<2	< 0.02	0.16	102.00	5.08	1020.00	1.63	0.16	102.00	1.50	<10	< 0.02	<1	8.00
	5/10/2018	SED04_0.5-0.6	Normal	soil	8.4	6.40	4									1	!	[1			1
	5/10/2018	SED04_1.0-1.1	Normal	soil	8.8	6.20	4									1	!	[1			
	4/10/2018	SED04_1.5-1.6	Normal	soil	8.9	6.50	4	8.40	<2	< 0.02	0.37	230.00	5.27	1050.00	1.69	0.37	230.00	1.50	<10	< 0.02	<1	17.00
	4/10/2018	FS04	Field_D_SED04_1.5-1.6	soil	8.8	6.6	4	8.4	<2	< 0.02	0.399	249	5.19	1,040	1.66	0.4	249	1.5	<10	< 0.02	<1	19
	5/10/2018	SED04_2.0-2.1	Normal	soil	8.8	7.20	4	1	1							1			1			1
	5/10/2018	SED04_2.5-2.6	Normal	soil	8.2	6.10	4															Τ
	4/10/2018	SED05_0.0-0.1	Normal	soil	8.3	6.40	3	8.60	<2	< 0.02	0.10	64.00	4.95	989.00	1.58	0.10	64.00	1.50	<10	< 0.02	<1	5.00
	4/10/2018	SED05_1.0-1.1	Normal	soil	8.5	7.20	4												1		T	T
	4/10/2018	SED05_2.0-2.1	Normal	soil	8.8	7.20	4															
	4/10/2018	SED06_0.0-0.1	Normal	soil	8.5	6.40	3	8.60	<2	< 0.02	0.12	76.00	4.78	954.00	1.53	0.12	76.00	1.50	<10	< 0.02	<1	6.00
	4/10/2018	SED06_2.0-2.1	Normal	soil	8.4	8.00	4														T	
	4/10/2018	SED06_3.0-3.1	Normal	soil	8.4	6.50	4	8.30	<2	<0.02	0.64	397.00	3.79	757.00	1.21	0.64	397.00	1.50	<10	< 0.02	<1	30.00
	4/10/2018	FS01	Field_D SED06_3.0-3.1	soil	8.5	5.1	4	8.2	<2	<0.02	3.38	2,110	15.2	3,040	4.87	3.38	2,110	1.5	81	0.13	6	158
	4/10/2018	SED07_0.0-0.65	Normal	soil	8.5	6.40	4	8.60	<2	< 0.02	0.11	70.00	5.06	1010.00	1.62	0.11	70.00	1.50	<10	< 0.02	<1	5.00
Statistics																						
Number of Results					32	32		13	0	0	13	13	13	13	13	13	13	13	11	11	11	13
Minimum Concentration					8.2	2.3		8	<2	<0.02	0.103	64	2.65	529	0.85	0.1	64	1.5	<10	<0.02	<1	5
Maximum Concentration	1				9	8		9	<2	<0.02	6	3,920	39	7,760	12	6	3,920	2	3,020	5	227	294
					8.5	6.4		8.5		0.01	0.217	135.5	5.11	1,025	1.635	0.215	135.5	1.5			0.5	8.0

Appendix C – Core Logs

ENVIRONMENTAL-SOIL BORE

Projec Projec Site F Locati	ct Preli ct No. Port Kei ion Be	iminary C 2127477 mbla Hrb erth 101			Drill Co. M Driller D A Rig Type Total Dept Diameter (h (m) 0.67		North Grid I Eleva Logg	ning 61 Ref GE	8800.27 84996.98 DA94_MGA Sarah Ecc		
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	OLOGICAL DESCRIPTION ssification Group Symbol); Pa ; Secondary / Minor Compone		Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase imported fill, ash.	Elevation (m)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	hand push	0.2	SED01_0.0-0.1 SED01_0.0-0.5 SED01_0.5-0.65		MH - Clayey Sil	.T dark black- brown, some san	sand	s W	VS S	Black co some co weak hyd	drocarbon odour louring from coal, al refuse	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -0.9 -1 -1.1 -1.2 -1.2 -1.3 -1.4 -1.5 -1.4 -1.5 -1.5 -1.6 -1.7 -1.8
- 1.9 - -												1.9
Notes												
			ed for geotechnical purposes.				1-					
	-	reviation	i s -Air Rotary, BE-Bucket Excavatio	n CC-Co	ncrete Coring	Moisture Abbreviations D-Dry, SM-Slightly Moist,			ils VL-	viations	Cohesive Soils V	/S-Verv
DC-Di (shove SD-Sc	amond el), HFA onic Dri	Core, Fl A-Hollow illing, SF	4-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructi A-Solid Flight Auger, SS-Split Spo Nindow Sampler	er, HE-Ha ve Drilling	nd Excavation g, PT-Pushtube,	M-Moist, VM-Very Moist, W-Wet, S-Saturated	Loose	, L-Loc e, D-De	ose, MD)-Medium)- Very	Soft, S-Soft, F-Firr ST-Stiff, VST-Very H-Hard	n,

ENVIRONMENTAL-SOIL BORE

Projec Projec Site F Locat	ct Preli ct No. Port Kei ion Be	iminary (2127477 mbla Ha erth 101			Driller D A Rig Type	t h (m) 0.67		North Grid I Eleva Logg	ing 61 Ref GE	Sarah Ecc	A_zone_56 leshall	
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol); F r; Secondary / Minor Compon		Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS s, staining, waste s, separate phase imported fill, ash.	Elevation (m)
0.1	hand push	0.2	SED02_0.0-0.1 SED02_0.0-0.5		MH - Clayey SI	LT dark black- brown, some fine	e sand	W	VS		drocarbon odour louring from coal	-0.1
- 0.4		0.3	SED02 0.5-0.65								nydrocarbon odour\	-0.4
- 0.6		0.3	SED02_0.3-0.03		MH - Clayey Sl some coal refus	LT dark black- grey, some fine s se	sand,	VM	S	Black co	louring from coal. pal pieces at , some coal	 0.6
0.7 0.8 0.9 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9					Termination De	pth at: 0.67 m. Target depth acl	hieved.					-0.7 -0.8 -0.9 -1 -1.1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.5 -1.6 -1.7 -1.7 -1.8
Notes												
Thic	log is a	ot inton	ded for geotechnical purposes.									
	-	reviatio				Moisture Abbreviations	Consi	stency	/ Abbre	eviations		
DC-Di (shove SD-Sc	amond el), HFA onic Dri	I Core, F A-Hollow illing, SF	-Air Rotary, BE-Bucket Excavat H-Foam Hammer, HA-Hand Au Flight Auger, NDD-Non Destru A-Solid Flight Auger, SS-Split S Window Sampler	ger, HE-H ctive Drilli	and Excavation ng, PT-Pushtube,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Loose	, L-Loc , D-De		-Very)-Medium) - Very	Cohesive Soils Soft, S-Soft, F-Firi ST-Stiff, VST-Very H-Hard	m, [,]

ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Projec Projec Site F Locat	ct Prel ct No. Port Ke ion Be	iminary (2127477 mbla Hai erth 101			Driller DA Rig Type	h (m) 0.67		North Grid F Eleva Logge	ing 61 Ref GD	Sarah Ecc	A_zone_56 leshall	
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol); Part r; Secondary / Minor Component		Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS s, staining, waste s,separate phase imported fill, ash.	Elevation (m)
0.1	hand push	2.7	SED03_0.0-0.1 SED03_0.0-0.5 (FS05 FD05)		MH - Clayey SII refuse, some fir	LT dark brown- black, some coal ne sand		S		Black co	drocarbon odour louring from coal, al refuse	
0.1		0.3			refuse, some fir	LT dark brown- black, some coal ne sand		S	VS	weak hy Black co	drocarbon odour louring from coal, al refuse	-0.1
0.3		0.6	SED03_0.5-0.65		MH - Clayey Sil refuse, some fir	LT dark brown- black, some coal		W	S	Black co	drocarbon odour louring from coal, al refuse	-0.3
0.6		0.2	-		MH - Clayey Sll	LT dark brown- black, some fine sa		 W	 F		drocarbon odour louring from coal,	E -0.6
0.9 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8					Termination De	pth at: 0.67 m. Target depth achiev	red.			some co	al refuse	-0.9 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.4 -1.5 -1.6 -1.7 -1.7 -1.8
– Notes	;	1	I				I					F
This	loa is r	not intend	led for geotechnical purposes.									
		reviatior				Moisture Abbreviations	Consis	tency	Abbre	viations		
DC-Di (shove SD-So	iamond el), HF/ onic Dr	I Core, Fl A-Hollow illing, SF	-Air Rotary, BE-Bucket Excavation H-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructiv A-Solid Flight Auger, SS-Split Spo Window Sampler	r, HE-Ha ve Drillin	nd Excavation g, PT-Pushtube,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granula Loose, Dense, Dense	L-Loo	se, MD	-Medium	Cohesive Soils \ Soft, S-Soft, F-Firr ST-Stiff, VST-Very H-Hard	m, ^r

ENVIRONMENTAL-SOIL BORE

Projec Projec Site P Locati	t Preli t No. Port Kei on Be	minary C 2127477 mbla Har rth 101			Driller D A Rig Type	Rossfelder Vibracore t h (m) 0.67		North Grid F Eleva Logge	Ref GD	84863 DA94_MGA_z Sarah Ecclesi	_	
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol r; Secondary / Minor Comp); Particle	Moisture	Consistency	CONT INDIO Odours, st materials,s	MENTS/ AMINANT CATORS taining, waste eparate phase ported fill, ash.	Elevation (m)
0.1	v	0.2	SED04_0.0-0.1 SED04_0.0-0.5 SED04_0.5-0.6 SED04_0.5-1.0		MH - Clayey Si	LT dark brown- black, some	fine sand	w	VS		carbon odour rring from coal	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6
0.7		0.3	SED04_1.0-1.1 SED04_1.0-1.5		MH - Clayey SI refuse, some fi	LT dark brown- black, some ne sand	coal				rocarbon odour ring from coal, refuse	-0.7 -0.8 -0.9 1 -1.1 -1.2
1.3 1.4 1.5 1.6 1.7 1.8 1.9			SED04_1.5-1.6 (FS04, FD04) SED04_1.5-2.0 (FS06, FD06)		MH - Clayey SI sand	LT black, some coal refuse,	trace fine	VM	S		rocarbon odour ring from coal. refuse	-1.3 -1.4 -1.5 -1.6 -1.7 -1.7 -1.8 1.9
Notes This I		ot intend	ed for geotechnical purposes.									
Drillin AH-A DC-Dia (shove SD-So	g Abbi ir Ham amond el), HFA nic Dri	reviation mer, AR- Core, FH A-Hollow Iling, SFA		r, HE-Ha /e Drillin	and Excavation ig, PT-Pushtube,	Moisture Abbreviations D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Gran Loose	ular So e, L-Loo e, D-De	ils VL- se, MD	D-Medium S D - Very S	ohesive Soils oft, S-Soft, F-Fir T-Stiff, VST-Ver -Hard	m,

ENVIRONMENTAL-SOIL BORE

Page 2 of 2

Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION Issification Group Symbol r; Secondary / Minor Comp); Particle	Moisture	Consistency	COI IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase mported fill, ash.	Elevation (m)
2.1			SED04_2.0-2.1 SED04_2.0-2.5									- 2.1
2.2					CH - CLAY grey	/- black, some silt		м	F	no staini	drocarbon odour ng, Weathered ne inclusions in core	-2.2
2.4			SED04_2.5-2.6									-2.4
2.6												-2.6
2.7					Termination Dep	oth at: 2.65m, refusal at bed	rock					-2.7
2.8												-2.8
3												-2.9
- 3.1												
3.2												-3.2
- 3.3 - 3.4												-3.3
3.5												-3.5
- 												-3.6
- 3.7 - 3.8												-3.7
3.9												-3.9
4												
4.1												-4.1
- 4.2 - 4.3												-4.2
Notes												
			led for geotechnical purposes.			Moisturo Abbraviationa	C	letora	A	viations		
AH-A DC-Di (shove SD-Sc	amond amond), HFA	Core, Fl -Hollow ling, SF/	15 Air Rotary, BE-Bucket Excavatio H-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructi A-Solid Flight Auger, SS-Split Spo Window Sampler	er, HE-Hand ive Drilling,	d Excavation PT-Pushtube,	Moisture Abbreviations D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Gran Loose	ular Soi e, L-Loo e, D-De	i ls VL- se, MD	-Medium	Cohesive Soils \ Soft, S-Soft, F-Firr ST-Stiff, VST-Very H-Hard	n, İ

ENVIRONMENTAL-SOIL BORE

Projec Projec Site P Locati	t Preli t No. Port Kei ion Be	minary C 2127477 mbla Har rth 101		1	Driller D A Rig Type	Rossfelder Vibracore h (m) 2.87		North Grid I Eleva Logg	tion	84720)A94_MGA Sarah Ecc	A_zone_56 leshall	
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol, r; Secondary / Minor Comp	; Particle	Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase imported fill, ash.	Elevation (m)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	v	0.2	SED05_0.0-0.1 SED05_0.0-0.5			LT dark grey- brown, some fi		S	VS S	Black co	drocarbon odour louring from coal	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.6 -0.7 -0.8 -0.9 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.2 -1.3 -1.4 -1.5 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5
Notes This I		ot intend	ed for geotechnical purposes.									
	-	reviation				Moisture Abbreviations	Cons	istency	/ Abbre	eviations		
AH-A DC-Dia (shove SD-So	ir Ham amond el), HFA nic Dri	mer, AR Core, Fl A-Hollow Iling, SF	-Air Rotary, BE-Bucket Excavatic H-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destruct A-Solid Flight Auger, SS-Split Sp Window Sampler	er, HE-Ha ive Drillin	and Excavation g, PT-Pushtube,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Gran Loose	ular So e, L-Loc e, D-De	ils VL- se, MD	Very Medium	Cohesive Soils Soft, S-Soft, F-Fin ST-Stiff, VST-Ver H-Hard	m,

ENVIRONMENTAL-SOIL BORE

Page 2 of 2

			1									
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol); Pa r; Secondary / Minor Compone	article ents.	Moisture	Consistency	CON ⁻ IND Odours, s materials,	IMENTS/ TAMINANT ICATORS staining, waste separate phase ported fill, ash.	Elevation (m)
2.1 2.2			SED05_2.0-2.1 SED05_2.0-2.5		MH - Clayey Sil	LT dark black- grey, some fine s	and V	́м	 S		ocarbon odour uring from coal	-2.1
2.3												-2.3
- 2.5 - 2.6			SED05_2.5-2.6									-2.5
2.7					CH - CLAY pale	e grey	N	1	F		no staining, d sandstone : boundary	-2.7
 2.9					Termination De	pth at: 2.87 m. Refusal on bedro	ck.					
- 3.1												
- - 3.2												-3.2
- 3.3												-3.3
- 3.4												-3.4
- 3.5 												-3.5
- 3.6 - 3.7												-3.7
3.8												-3.8
- 												-3.9
4												-4 -4
- 4.1												-4.1
4.2												-4.2
– <u>4.3</u> Notes			1				I					<u> </u>
This	log is n	ot intend	led for geotechnical purposes.									
	-	eviation				Moisture Abbreviations	Consiste					10 1/200
DC-Di (shove SD-Sc	amond el), HFA onic Dril	Core, Fl -Hollow lling, SF	-Air Rotary, BE-Bucket Excavation H-Foam Hammer, HA-Hand Aug Flight Auger, NDD-Non Destruct A-Solid Flight Auger, SS-Split Sp Window Sampler	er, HE-Hai tive Drilling	nd Excavation , PT-Pushtube,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Loose, L- Dense, D Dense	-Loos	se, MD	-Medium S - Very S	Cohesive Soils Soft, S-Soft, F-Firi ST-Stiff, VST-Very H-Hard	m, [,]
			Sdat net on 29 Oct 2018									

ENVIRONMENTAL-SOIL BORE

Projec Projec Site F Locati	ct Prel ct No. Port Ke ion Be	iminary (2127477 mbla Hai erth 101			Driller DA	Rossfelder Vibracore h (m) 4.50		North Grid I Eleva Logg	tion	84733)A94_MGA Sarah Eccl	_zone_56 leshall	
Depth (m)	Drilling Method	PID (mqq)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION sssification Group Symbol); F r; Secondary / Minor Compon		Moisture	Consistency	COI IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase mported fill, ash.	Elevation (m)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	v	0.4	SED06_0.0-0.1 SED06_0.0-0.5 SED06_0.5-0.6 SED06_0.5-1.0 SED06_1.0-1.1 SED06_1.0-1.5 SED06_1.5-1.6 SED06_1.5-2.0			LT dark brown- black, some fine		w	VS S	Black co distinct h Black co Slight ree	lydrocarbon odour louring from coal louring from coal. duction in water down unit	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.2 -1.4 -1.5 -1.4 -1.5 -1.5 -1.4 -1.5 -1
	Vibra	core from	l n seabed									۲ <u>م</u>
			led for geotechnical purposes.									
AH-A DC-Di (shove SD-Sc	Air Ham amond el), HFA onic Dri	Core, Fl A-Hollow	IS -Air Rotary, BE-Bucket Excavation H-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructin A-Solid Flight Auger, SS-Split Spo Window Sampler	r, HE-Ha /e Drillin	nd Excavation g, PT-Pushtube,	Moisture Abbreviations D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granu Loose	ular So e, L-Loc e, D-De	ils VL- se, MD	viations Very Medium Very	Cohesive Soils Soft, S-Soft, F-Fir ST-Stiff, VST-Ver H-Hard	m, ⁻

ENVIRONMENTAL-SOIL BORE

Page 2 of 3

												1
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	OLOGICAL DESCRIPTIO Issification Group Symbo ; Secondary / Minor Com	ol); Particle	Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase imported fill, ash.	Elevation (m)
1 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.2 4.1 4.2		0.6	SED06_2.0-2.1 SED06_2.0-2.5 SED06_2.5-2.6 SED06_2.5-3.0 SED06_3.0-3.1 (FD01, FS01) SED06_3.0-3.5 SED06_3.5-3.6 SED06_3.5-4.0 SED06_4.0-4.1 SED06_4.0-4.1		MH - Clayey Sil some coal	.T dark grey- black, trace f	ine sand,	W			drocarbon odour louring from coal, se	u - <td< td=""></td<>
Notes	Vibrad	core from	n seabed									
	-		ed for geotechnical purposes.			Moisture Abbassistic	0	lator	, <u>A</u> LL			
	-	reviation mer, AR-	I s -Air Rotary, BE-Bucket Excavation	, CC-Co	ncrete Corina.	Moisture Abbreviations D-Dry, SM-Slightly Mois		istency ular So		viations Very	Cohesive Soils	VS-Verv
DC-Di (shove SD-Sc	iamond el), HFA onic Dril	Core, FH -Hollow ling, SFA	All Rolary, DE-Ducket Casavalor I-Foam Hammer, HA-Hand Auger Flight Auger, NDD-Non Destructiv A-Solid Flight Auger, SS-Split Spoo Window Sampler	, HE-Hai e Drilling	nd Excavation , PT-Pushtube,	M-Moist, VM-Very Moist, W-Wet, S-Saturated	Loose	e, L-Loo e, D-De	se, MD)-Medium) - Very	Soft, S-Soft, F-Fir ST-Stiff, VST-Ver H-Hard	m, ·

ENVIRONMENTAL-SOIL BORE

Page 3 of 3

Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	OLOGICAL DESCRIPTION ssification Group Symbol); Pa ; Secondary / Minor Componei		Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase imported fill, ash.	Elevation (m)
4.4												-4.4 E
- <u>4.5</u>					Termination De	oth at: 4.50 m. Refusal on bedroc	:k.					- <u>4.5</u>
4.6												-4.6
4.7												
												-4.7
4.8												-4.8
4.9												-4.9
- 5												-
4.9 												E
- 5.1 - -												5.1
5.2 5.3 5.4 5.5 5.5 5.6 5.7 5.7												5.2
- 5.3												-5.3
												-5.4
5.4 												
- 5.5 -												-5.5
5.6												-5.6
5.7												-5.7
-												Ē
5.8 												-5.8 E
5.9												-5.9
-6												E -6
-												Ē
5.9 6.1 6.1												-6.1
- 6.2												-6.2
6.3												6.3
- 6.4												-6.4
E I												E -0.4
- - 6.5												-6.5 -
- 6.6												-6.6
Notes	Vibrad	core from	n seabed									
This	log is n	ot intend	ed for geotechnical purposes.									
Drillin	ig Abbr	eviation	IS			Moisture Abbreviations				eviations		
DC-Di (shove SD-Sc	amond el), HFA onic Dril	Core, Fl -Hollow ling, SFA	Air Rotary, BE-Bucket Excavatior I-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructiv A-Solid Flight Auger, SS-Split Spo Window Sampler	r, HE-Hai /e Drilling	nd Excavation	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		, L-Loo , D-De	se, MD	Very)-Medium) - Very	Cohesive Soils \ Soft, S-Soft, F-Firr ST-Stiff, VST-Very H-Hard	m,

ENVIRONMENTAL-SOIL BORE

Projec Projec Site F Locat	ct Prel ct No. Port Ke ion Be	iminary (2127477 mbla Hal erth 101			Drill Co. N Driller D A Rig Type Total Dept Diameter (h (m) 0.67	5	North Grid I Eleva Logg	ing 61 Ref GD	– Sarah Ecc	_zone_56 leshall	
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTIO Issification Group Symbo r; Secondary / Minor Com	ol); Particle	Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase imported fill, ash.	Elevation (m)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	hand push	0.4	SED07_0.0-0.65		fine sand	<u>T dark brown- black, som</u> <u>oth at: 0.67 m. Target dept</u>	e fine sand	s	VS F	no staini colouring coal refu lost from	drocarbon odour ng, Black g from coal, some se. 70% of core 0.0-0.6 drocarbon odour louring from coal, al refuse	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.1 -1.2 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5
- 1.9 - -												
Notes		not intend	led for geotechnical purposes.									
		reviatior				Moisture Abbreviations	Cons	sistency	/ Abbre	viations		
AH-A DC-Di (shove SD-Sc	Air Ham amond el), HF/ onic Dri	mer, AR Core, Fl A-Hollow	-Air Rotary, BE-Bucket Excavatio H-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructi A-Solid Flight Auger, SS-Split Spo Window Sampler	r, HE-Ha ve Drilling	nd Excavation g, PT-Pushtube,	D-Dry, SM-Slightly Mois M-Moist, VM-Very Moist, W-Wet, S-Saturated	st, Gran Loos	ular So e, L-Loc e, D-De	ils VL- se, MD	Very Medium	Cohesive Soils Soft, S-Soft, F-Fin ST-Stiff, VST-Ver H-Hard	rm,

ENVIRONMENTAL-SOIL BORE

Projec Projec Site F Locati	t Prel t No. Port Ke	iminary (2127477 mbla Hai eclamatio	bour		Driller D A Rig Type	Rossfelder Vibracore h (m) 3.57		North Grid I Eleva Logg	tion	83381 DA94_MGA Sarah Eccl		
Depth (m)	Drilling Method	PID (mqq)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol); Pa r; Secondary / Minor Compone		Moisture	Consistency	COI IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase mported fill, ash	
0.1	V	0.1	REA01_0.0-0.1 REA01_0.0-0.5 REA01_0.5-0.6 REA01_0.5-1.0		refuse, some sh	LT fine, dark black- brown, and fi		w 	VS S	Black col some co	ydrocarbon odour louring from coal,	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6
0.9			REA01_1.0-1.1 REA01_1.0-1.5		with fine sand	LT dark black- brown, trace coal rse, poorly graded, subangular, i		w .	s 	Black col trace coa	ydrocarbon odour louring from coal, al refuse nsituent coal,	-0.7 -0.8 -0.9 -1 -1.1
1.2 1.3 1.4 1.5 1.6 1.7 1.8		1.6	REA01_1.5-1.6 REA01_1.5-2.0			LT dark black- brown, some coal le to medium sand		W	F		ydrocarbon odour louring from coal, al refuse	-1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9
Notes		I lot intend	l led for geotechnical purposes.						I	1		
AH-A DC-Dia (shove SD-So	ir Ham amond el), HFA nic Dri	Core, Fl A-Hollow Iling, SF/	IS Air Rotary, BE-Bucket Excavati H-Foam Hammer, HA-Hand Aug Flight Auger, NDD-Non Destruc A-Solid Flight Auger, SS-Split Sp Window Sampler	jer, HE-Ha tive Drilling	nd Excavation g, PT-Pushtube,	Moisture Abbreviations D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granu Loose	ular So , L-Loc e, D-De	ils VL- ose, MD	-Very -Very -Medium - Very	Cohesive Soils Soft, S-Soft, F-Fi ST-Stiff, VST-Ve H-Hard	irm,

ENVIRONMENTAL-SOIL BORE

Page 2 of 2

			1									1
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Cla	IOLOGICAL DESCRIPTION assification Group Symbol); P r; Secondary / Minor Compon	article ents.	Moisture	Consistency	CO IN Odours material	DMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase imported fill, ash.	
			REA01_2.0-2.1 (FS03, FD03) REA01_2.0-2.5									È l
2.1												2.1
- 2.2												-2.2
E												Ē
- - 2.3												-2.3
2.4												-2.4
2.5												-2.5
-			REA01_2.5-2.6 REA01_2.5-3.0									E -2.5
2.6												-2.6
2.7												-2.7
E												
E I		0.4										-2.8
2.9												
2.9			REA01_3.0-3.1									-3
- 21			REA01_3.0-3.5									-3.1
3.1						y SAND fine to medium, well gra black- brown mottled brown	aded,	M	D		ydrocarbon odour louring from coal,	E -3.1
3.2 3.3		0.7								some co	ncrete	
- 3.3												-3.3
- 3.4												-3.4
- 3.4			REA01_3.4-3.5									E -3.4
- 3.5 -				1								
- 3.6					Termination De surface.	pth at: 3.57 m. Refusal on unind	lentified					-3.6
- 3.7					Sunace.							-3.7
- 0.7												Ē
- 3.8 -												
												-3.9
												E -4
- 4.1 -												-4.1 -
4.2												-4.2
- - - 4.3												-4.3
Notes							I					4.3
	-	ot intend	led for geotechnical purposes.			Moisture Abbreviations	Consis	tency	Abbre	viations		
AH-A	ir Ham	mer, AR	-Air Rotary, BE-Bucket Excavation H-Foam Hammer, HA-Hand Auge			D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist,	Granul	ar So	ils VL-		Cohesive Soils	
(shove	el), HFA	A-Hollow	H-Foam Hammer, HA-Hand Auge Flight Auger, NDD-Non Destructiv A-Solid Flight Auger, SS-Split Spo	ve Drilling	, PT-Pushtube,	W-Wolst, VM-Very Molst, W-Wet, S-Saturated	Dense, Dense	D-De	se, iviL nse,VE	- Very	Son, S-Son, F-Fin ST-Stiff, VST-Very H-Hard	y Stiff,
			Window Sampler	, on, v = VI			Dense					

ENVIRONMENTAL-SOIL BORE

Projec Projec Site P .ocati	t Preli t No. ort Kei on Re	minary (2127477 mbla Ha clamatic	rbour		Driller D A Rig Type	Rossfelder Vibracore :h (m) 3.45		Northir Grid Re Elevati	By Sarah Eccleshall	
Depth (m)	Drilling Method	(mqq) Olq	Sample ID	Graphic Log	Soil Type (Classifi	GICAL DESCRIPTION cation Group Symbol); Particle condary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials,separate phase liquids, imported fill, ash.	Elevation (m)
0.1 0.2 0.3 0.4 0.5	V	0.4	REA02_0.0-0.1 REA02_0.0-0.5 REA02_0.5-0.6 REA02_0.5-1.0			lium, well graded, subrounded to brown, some clayey silt	W	D	no odour Black colouring from coal	-0.1 -0.2 -0.3 -0.4 -0.5
0.6 0.7 0.8 0.9 1 1.1		0.2	REA02_1.0-1.1 REA02_1.0-1.5		MH - Clayey SILT da	rk grey- brown, trace fine sand		S	weak hydrocarbon odour Black colouring from coal. Decreasing sand content with depth in unit, some coal refuse	
 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 			REA02_1.5-1.6 REA02_1.5-2.0							-1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.7
otes										
	na ie n	ot intend	led for geotechnical purpose	9						
	-	reviation		3.		Moisture Abbreviations	Consis	tency	Abbreviations	
AH-A C-Dia hove D-So	ir Ham amond I), HFA nic Dri	mer, AR Core, Fl A-Hollow Iling, SF	-Air Rotary, BE-Bucket Exca H-Foam Hammer, HA-Hand Flight Auger, NDD-Non Des A-Solid Flight Auger, SS-Spl Window Sampler	Auger, H tructive D	E-Hand Excavation Drilling, PT-Pushtube,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granula Loose,	ar Soil L-Loos	s VL-Very e, MD-Medium se,VD - Very ST-Stiff, VS ⁻ H-Hard	F-Firm,

ENVIRONMENTAL-SOIL BORE

SOIL BORE REA02

Page 2 of 2

Depth (m)	Drilling Method	PID (ppm)	Sample ID	Graphic Log	Soil Type (Classifie	GICAL DESCRIPTION cation Group Symbol); Particle condary / Minor Components.	Moisture	Consistency	COMMEN CONTAMIN INDICATO Odours, stainir materials,separ liquids, importe	ANT (E) RS (E) g, waste (C) ate phase (E)
2.1		0.3	REA02_2.0-2.1 (FD03, FS03) REA02_2.0-2.5		SM - Silty SAND darl fine gravel	grey- brown, some clay, trace	w		weak hydrocarbo Slight black stair coal	
2.3		0.2	REA02_2.5-2.6		SM - SAND medium, some shells	well graded, rounded, grey,	м	D	no odour	-2.3
2.6			REA02_2.5-3.0							-2.6
2.9			REA02_3.0-3.1		ML - CLAY grey- bro	wn mottled pale brown, some silt	м	VST	no odour	-2.9
										-3.1
3.4					Termination Depth at surface.	: 3.45 m. Refusal on unindentified				-3.4
3.6										-3.6
3.8										
4.1										4.1 4.2 -
– 4.3 Notes		ot intend	led for geotechnical purpose:	 s.			<u> </u>	<u> </u>	<u> </u>	<u>– 4.3</u>
	-	reviatior				Moisture Abbreviations	Consis	tency /	Abbreviations	
DC-Di (shove SD-Sc	amond el), HFA onic Dri	Core, Fl A-Hollow Iling, SF/	-Air Rotary, BE-Bucket Exca H-Foam Hammer, HA-Hand . Flight Auger, NDD-Non Des A-Solid Flight Auger, SS-Spli Window Sampler	Auger, H tructive D	E-Hand Excavation Drilling, PT-Pushtube,	M-Moist, VM-Very Moist, W-Wet, S-Saturated	Loose,	L-Loos	e, MD-Medium S se,VD - Very S	ohesive Soils VS-Very oft, S-Soft, F-Firm, T-Stiff, VST-Very Stiff, -Hard

Appendix D – Field Documentation

Calibration & Service Report Gas Monitor

Company:	Active Environmental Solutions Hire	Manufacturer:	RAE Systems	Serial #:	592-901218
Contact:	Aleks Todorovic	Instrument:	MiniRAE 3000	Asset #:	-
Address:	2 Merchant Avenue	Model:	PGM 7320	Part #:	-
	Thomastown Vic 3074	Configuration:	VOC	Sold:	-
Phone:	03 9464 2300 Fax: 03 9464 3421	Wireless:	-	Last Cal:	-
Email:	Hire@aesolutions.com.au	Network ID:	-	:# doL	-
		Unit ID:	-	Cal Spec:	Std

ltem	Test	Pass/Fail	Comments
Battery	Li lon	~	
Charger	Charger, Power supply	~	
	Cradle	1	
Pump	Flow	~	>500 mL/min
Filter	Filter, fitting, etc	~	
Alarms	Audible, visual, vibration	1	
Display	Operation	1	
PCB	Operation	1	
Connectors	Condition	~	
Firmware	Version	~	2.16
Datalogger	Operation	1	
Monitor Housing	Condition	1	
Case	Condition/Type	~	
Sensors			
Oxygen		-	
LEL		-	
PID	10.6eV	~	α γ
Toxic 1		-	
Toxic 2		-	
Toxic 3		-	
Toxic 4		-	
Toxic 5		-	

Engineer's Report

Setup, service and calibration for hire

Calibration Certificate

Sensor	Туре	Serial No:	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot #		Zero	Span
Oxygen		-			-			
LEL								
PID	10.6eV	2R003225	lsobutylene	100 PPM	WO148384-1	1	0	100 PPM
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								

Calibrated/Repaired by: Milenko Sisic

Date: 2nd October 2018

Next due: 2nd April 2019

Head Office – Melbourne 2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300 NSW Office – Ashfield Level 2, Suite 14, 6 - 8 Holden Street Ashfield NSW 2131 Australia T: +61 2 9716 5966 WA Office - Malaga Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663 QLD Office - Banyo Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

192

1

sales@aesolutions.com.au

www.aesolutions.com.au

c./users/milenka/deskton/calibration/lwater/nidwater/592_901218/592_901218 02 10 2018 docv

	og oncel	
Site SEDØ5	Day Wed	Date 03/10/18
GPS Location	Easting 306 887	Northing 6184770.
Time on Site 4,0	Time off Site	235
Personnel David	Auchin	
Vessels	Polaris	Sea hurt
Weather	Wind Direction Hat SW	Wind Strength 18. Knots
Type of Core Tube: Al / Steel / Plas	Length of Tube 4.5 Metres	Tube Gauge 1.6 mm
Target Depth Metres	Sounded Depth 13.35 Metres	Depth Reached 2.86 Metres
Vibration Strength	Duration of Vibrations 2,29 Mins	Corer Ballast Kilos
No. of Sub Samples	Sub Sample Spacing mm	Finger Gauge , 9 mm
No. of Sub Samples given to Lab		Time Delivered
Description of Core		
	per chation -	lost Soomen
	prici giugio e	TOST DUNGS
A DELINE AND A DELINE		
		1 1 1 1 1 1 1 1
		3
	2" 1 Part 1	
Marke B.		

MDS Daily Vibrocoring Log Sheet

Completed By:

G:\VIBROCORING - SAMPLING\COFFEY\METHOD.DOC

4110/18 Site SED03 Thusday Date Day **GPS** Location Easting Northing 12.64 Time on Site Time off Site DAVID ALLCHIN Personnel Vessels Sea Mu Weather RAIN Knots Wind Direction Wind Strength Type of Core Tube: Al / Steel Plas mm Tube Gauge Length of Tube Metres Target Depth Metres Metres Sounded Depth 12. Depth Reached Metres Vibration Strength Duration of Vibrations Corer Ballast Kilos Mins No. of Sub Samples mm Sub Sample Spacing Finger Gauge mm No. of Sub Samples given to Lab Time Delivered **Description of Core** Hand Core - no wibations used mudly bottom with Small Stoned. (+ Mail and the second and the second

MDS Daily Vibrocoring Log Sheet

Completed By:

Date / /

GAVIBROCORING - SAMPLING\COFFEY\METHOD.DOC

Page 8 of 8

McLennans Diving Service Thunter River Vibrocoring Work Specification

MDS Daily Vibrocoring L Site SED 02.	Day Thursd	ay	Date 4/10	118	
GPS Location	Easting	0	Northing		
Time on Site /12 •	73 Time	e off Site	12.4	0.	
	TO ALLUN			12 Same	
Vessels	Satturt				
Weather Rain	Wind Direction		Wind Strength		Knots
Type of Core Tube: Al / Steel / Plas	Length of Tube	Metres	Tube Gauge	1-6.	mm
Target Depth Metres	Sounded Depth	Metres	Depth Reached	1.6.	Metres
Vibration Strength	Duration of Vibrations	Mins	Corer Ballast		Kilos
No. of Sub Samples	Sub Sample Spacing	mm	Finger Gauge		mm
No. of Sub Samples given to Lab			Time Delivered		ALC: NO
Description of Core Mana Silt	1 Core - no	, ,,	Hons US	ed	
Description of Core Mana Silf		, ,,	Hons US	ed	
Description of Core Mana Silf		, ,,	Hons US	ed	
Mana Silf		, ,,	Hons US	ed	
Mana Silf		, ,,	Hons US	ed	
Mana Silf		, ,,	Hors US	ed	
Mana Silf		, ,,	Hons US	ed	
Mana Silf		, ,,	Hons US	ed	

Completed By:

Date / /

GAVIBROCORING - SAMPLING COFFEY METHOD.DOC

McLennans Diving Service Thunter River Vibre coring Work Specification

MDS Daily Vibrocoring Lo Site REA02	Day Wed		Date 03/1	0/18
GPS Location	Easting 307895		Northing 618	
Time on Site 12.44	Time off Si	te		
Personnel David R	ALL Chin			
Vessels	Polaris		Seahe	int
Weather	Wind Direction		Wind Strength	Knots
Type of Core Tube: Al / Steel) Plas	Length of Tube 4.5 M	etres	Tube Gauge	1-6 mm
Target Depth Metres	Sounded Depth 11.75 Ma	etres	Depth Reached	3.45 Metres
Vibration Strength	Duration of Vibrations 3. 10 M	lins	Corer Ballast	Kilos
No. of Sub Samples	Sub Sample Spacing	mm	Finger Gauge	. 9 mm
No. of Sub Samples given to Lab			Time Delivered	
Description of Core				-
				and the second s
	A CARLES AND			A STATE OF STATE
			a the second sec	
	the mark the first			
	STARLING ALS	1		ange ange
	C. C			
				1
			- Andrewski -	
		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
A CARLENS		A States	and the second second	
				11750
				11750
				11750

Completed By:

Date / /

G:\VIBROCORING - SAMPLING\COFFEY\METHOD.DOC

McLennans Diving Service Thunter River Vibrocoring Work Specification

MDS Daily Vibrocoring Log Sheet

Site REA07	Y/	
GPSJ agentic Aconta	Day 03/10/18 Wed	Date 03/10/18
GPS-Location 307669	Easting 308069	Northing 6183 381
Time on Site 11.25	Time off Site	12.11.
Personnel David Mile,	Vin	
Vessels Polaris Sea hunt	Polaris	Sea Munt.
Weather	Wind Direction	Wind Strength Knots
Type of Core Tube: Al / Steel / Plas	Length of Tube 4-5 Metres	Tube Gauge 1.6 mm
Target Depth 9124 Metres	Sounded Depth 7.2 Metres	Depth Reached 357 Metres
Vibration Strength	Duration of Vibrations 4.2 Mins	Corer Ballast Kilos
No. of Sub Samples	Sub Sample Spacing mm	Finger Gauge , 9 mm
No. of Sub Samples given to Lab	Charles and the second	Time Delivered
Description of Core		
Penetration	Q1,770	1 All All
, enerration	2942 <u>50</u> .	A CONTRACTOR
		8
	aller and and the	
		3570
and an all a state		3570 660 1230
	The second second second	1230
		4
		1

Completed By:

Date /

1

G:\VIBROCORING - SAMPLING\COFFEY\METHOD.DOC

Page 8 of 8

McLennans Diving Service Service Hunter River Vibrocoring Work Specification

The Daily vibrocoring Lo	og Sneet	
Site SEDO4	Day Wed	Date 03/10
GPS Location	Easting 863	Northing 822.
Time on Site	16 . 06 Time off Site	Re 16024.
Personnel Da	wid ALCHIN	A State State And
Vessels	Palaris	Sea Hunt
Weather	Wind Direction	Wind Strength Knots
Type of Core Tube: Al / Steel / Plas	Length of Tube 4.5 Metres	Tube Gauge 1-6 mm
Target Depth Metres	Sounded Depth 14 Metres	Depth Reached 2464 Metres
Vibration Strength	Duration of Vibrations 3 11 Mins	Corer Ballast Kilos
No. of Sub Samples	Sub Sample Spacing mm	Finger Gauge mm
No. of Sub Samples given to Lab	-	Time Delivered
Description of Core	the second second	and the second second
· · · · · · · · · · · · · · · · · · ·		
1315 F	1 H	
4.	1 4 f	
1 June	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the second sec	18 P	
		*
P	and the second	
	Mar 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	the second s	

Date

MDS Daily Vibrocoring Log Sheet

Completed By:

GAVIBROCORING - SAMPLING COFFEY METHOD.DOC
MDS Daily Vibrocoring Log Sheet Day Thursday Date 4/10/17 SED 07 Site Northing GPS Location Easting 12.00 11.45 Time on Site Time off Site David AUCHIN Personnel Sea hunt Vessels RAIN Knots Weather Wind Strength Wind Direction 1.6 Type of Core Tube: Al /Steel) Plas mm Tube Gauge Length of Tube 1.6 Metres Metres Target Depth 1-6 Depth Reached Metres Sounded Depth Metres Vibration Strength Corer Ballast Kilos Duration of Vibrations Mins No. of Sub Samples mm Sub Sample Spacing Finger Gauge mm No. of Sub Samples given to Lab Time Delivered **Description of Core** Hand Core Silty mud top Surface. Vihra

Completed By:

Date / /

GAVIBROCORING - SAMPLING\COFFEY\METHOD.DOC

Page 8 of 8

McLennans Diving Service T Hunter River Vibrocoring Work Specification

MDS Daily Vibrocoring Lossie SED 01	Day Thursday	Date 4/10/17
GPS Location	Easting	Northing
Time on Site 12.07		12.20
	avid Allchin	12 00
Vessels	Seaturt	
Weather RAIN	Wind Direction	Wind Strength Knots
Type of Core Tube: Al / Steel/ Plas	Length of Tube Metres	Tube Gauge 1.6 mm
Target Depth Metres	Sounded Depth 15.5 Metres	Depth Reached 1.6, Metres
Vibration Strength	Duration of Vibrations Mins	Corer Ballast Kilos
No. of Sub Samples	Sub Sample Spacing mm	Finger Gauge mm
No. of Sub Samples given to Lab		Time Delivered
Description of Core Hand	1 core - No VI	brations used.
	1 core - No Vi	brations used.
	1 core - No VI	brations used.
	1 core - No VI	brations used.
		brations used.

Completed By:

Date / /

G: VIBROCORING - SAMPLING COFFEY METHOD. DOC

Page 8 of 8

McLennans Diving Service Stunter River Vibrocoring Work Specification

MDS Daily vibrocoring L	og Sneet	
Site SED06	Day Wed	Date 03/10/18
GPS Location	Easting 306932	Northing 6184733
Time on Site 3.26	Time off Site	3.43.
Personnel David	Allchin	MAR DUNNE
Vessels	Polaris	Sea Hight
Weather	Wind Direction	Wind Strength Knots
Type of Core Tube: Al / Steel / Plas	Length of Tube 4.5 Metres	Tube Gauge 1-6 mm
Target Depth Metres	Sounded Depth 1014 Metres	Depth Reached 4.5 Metres
Vibration Strength	Duration of Vibrations 3,24 Mins	Corer Ballast Kilos
No. of Sub Samples	Sub Sample Spacing mm	Finger Gauge 9 mm
No. of Sub Samples given to Lab	the second se	Time Delivered
Description of Core		the sector of the sector
	The state of the second second	
0. F		
	the contraction of the contracti	
(· · · ·		
The second se		
		and the second s
- Participant		
1		
	St. St. St. St. St.	
	All and a second	

Completed By:

Date /

G:\VIBROCORING - SAMPLING\COFFEY\METHOD.DOC

3 10

2

Appendix E - Laboratory Documentation

Ênu	CHAIN OF CUSTODY REALTITUDE CLEAN ALS Laboratory plager 624	DBR/SBANE Ph: 07 3243 DGLADSTO Ph: 07 7921	21 Burma Road Poo 3990 E: adolate 9 al 32 Shand Street Sta 7222 E: samples bits NE 46 Caterriondah 5600 E: gladsjone ØJ	tilord QLD 4053 baine@alspiobal.com Drive Climon QLD 4680	DMELBOURNE Ph: 03 6549 960	la foosir Road Mackay (7 Er mackay © alsofeba 2-d Westell Road Spr 10 E: samples melboun Sydney Road Mudgee I 5 E: msdgee mail @also	ingvale 'VIC 3' ne@elaclobal	Ph: 02 4999 171 ENOWI .com Ph: 024 OP	57LE 5 Rosa Gum 3 9433 E: samples RA 4/13 Geary Pl 423 2053 E: nowr 'ERTH 10 Hod Wa 108 9209 7655 E:	sinewcastle@alsg) ace North Nowra I a@alsgloba:.com ny Malaga WAS9	lobal.com NSW 2541 90	Pha Citte Pha Division	VDNEV 277-289 W 02 8784 6555 E: 38 DWNSVILLE-44-15 07 4796 0600 E: 10 OLLONGONG 89 I 02 4225 3125 E: pp	amples.sydney@s Desma Court Ba Inviccute_coveronin Kenny Stiest Wol	alsglobal.com inte QLD 4618 iantal Balsglobal.co iorigong NSW 250	346
CLIENT:	QHO Pty Ltd				Standard TAT	(List due date):	-	,					EONE C (CN			
OFFICE:	ievel 15, 133 Castiereagh St, Sydney		(Standard TAT n some tests e.g.,	tay be longer for Ultra Trace Organics)	Mon Standard	or urgent TAT (Li	st due date	a): 3 d	55		Cience	n Boot (Budit - See			i ho	
	: 21-27477 - Task 3J for Contamination		ALS QUOTE	NO.:	SY-236-18			COC SEC	QUENCE NUM	BER (Circle)	Free IC	ov novem ce trikke (refort upon rea	或创	i bia	
	UMBER:2127477				· ,			∞ () ²	34	\$ ^{\$}	7 Fundo	n Carrier Tol Dent	n an Turaine -	16		
	MANAGER: Jacqui Haikhurch	·····	H: 0447 202,58					DF: 1 2	3 (4		7 00000	Oraniero, S. Status				
	t: Sarah Eccleshali		OBILE: 0459 5	+0 302 	S. Eccle				neri	1	RELINQUISI	HED BY:		RECEIVED	/¥:	
	Hed to ALS? (YES / NO)	· · · · · · · ·	T (or default):		DAȚE/TIME:			∦J∦N ATE/TIME: ,	1000	0100						
· · · · · ·	orts to: sarah.eccieshall@ghd.com; jacqui.h			2	4/10/18	21:0			OIA	4200) DATE/TIME:			DATE/TIME:		
	TS/SPECIAL HANDLING/STORAGE OF DIS							<u> </u>		<u> </u>	4.		1			
		PUSAL:				in the second										
ALS	SANPLE MALTIC SOUD	DETAILS		CONTRACT	S. Solid Steel			ANA	LYSIS REQUE	ED Including	SUITES (NB. Sui	le Codes must be list required) or Dissolve	ed to attract suit	a price)		
COSE ()							- <u>1</u>					edulleo) or Diseolve	a (neio nitereo p	The reduced)		
LABID	SAMPLE ID	DATE / TIME	МАТРІХ	TYPE & PRESE (refer to codes		CONTAINERS B7 Suite: TRH, BTEX, PAH, Metals (B)	TBT	Dioxins,	Cyantde	Ammonta	100	PSD Moisture content				Hold
	Selende to anone	•														
٦.	SEDO6_0.0-0.1	4/10/18	S	B. Jac	- 2											X
7		4/10/1830	ć	R la	- 2	10 H				17		1				
3		4/10/18	<u> </u>	2	- 7		┼╌──						┼╴┼╾╺┫			
	2 E006 _ 1.0 - 1.1	4/10/18		15, 19					↓ /	44			┝──╏			X
4	SED06_1.5-1.6	4/10/68	S	B; Jar	- 2	-										\¥
5	SEDA6 2-0-2.1	4/10/19 5	S	R. la	1	2		5			·	· · · · · · · · ·				X
6		4/10/18	~				+			_'			•••			
	SEV06 _ 6-3-674	11:00		<u>v ja</u>	<u> </u>					En En	vironme	ntal Divisi	on			 X
1	SEDO6_3.0-3.1	4/10/18	5	B, Ja		2	ļ			Syd	uney Work Orda	r Doforonne				
ୖୖୖ	SED06 3-5-36	4/10/18	5	B, Je	- 7	2			1 .		FSIS	r Reference 32938	Q			×
<u>9</u>	SED06 4.0-4.1	4/1018	S	R. Ja	r 7			1		• 1		12300	U I			
10	5206 7-3-4-4	4/10/18		n. 1_	 Z 					1			BI :			1
		- 1:23													-+-+	-r
11	F103	4/10/18		Byrei	· <i>Я</i>	<u>F</u> #							and the second second			$- \not$
Water Cont	afnar Codesc F = Unpreserved Plastic; N = Nitric al HCI Preserves; yB = yCA Vial Sodium Bisulphate	Preserved Plastic; ORC = Nitr	c Preserved ORC	; SH = Socium Hydro	TOTAL nde/Cd Preserved: S	= Socium Hydroxdo	le Preserver	d Plastic; 4 G = A	Amber Glass U	Telepr	10ne: +81-2-				de Preserved G	

Énui	CHAIN OF CUSTODY ALS Laboratory please tick -3	Ph: 08 6359 BRISBAN Ph: 07 3245 DIGLADSTO Ph: 07 7471	21 Burma Road Po 0690 E: adebide fits 23 Shand Street S 7222 E: samples.br NE 45 Callemondeb 5600 E: gladstone 6	alsglobal.com rafford QLD 4053 rsbane @atsglobal.com n Drive Gilmon QLD 4680	Ph: 07 4944 (DMELBOUR Ph: 03 8549	8 Harbótr Road M. 177 E: mackay@a NE 2-4 Westall Ro 9600 E: seruples m 7 Sydney Road M. 735 E: mudgee.m	isglobal.com ad Springvale elbourne@als	VIC 3171 splotál.com	Ph: 02 4958 94 CIAOWRA Ph: 024423 CIPER	E 5 Rose Gurd R 433 E: samples n 4/13 Geary Place 3 2063 E: nowra 6 3TH 10 Hod Way I 9209 7655 E: sa	evcastie Graiegi i North Nowra N alsgîobal.com Malaga WA 601	obal.com ISW 2541 30		Ph:02 OTO Ph:00 UWO	2 8784 855 NNSVILLE ? 4796 069 LLONGON	5 E: samples. 14-15 Desma 0 E: lowneavile IG 99 Kenny S	ayon ey Saisgla Court Bohle (s.emviroarnan tal	DLD 4816 I위해agiobal.com ong NSW 2500	'n
CLIENT:	GHD Pty Ltd					AT (List due da						Sector Sector	LABORATC	and started	on r	Cider	Жċ.		
	level 15, 133 Castlereagh St, Sydney		some tests e.g.	may be longer for . Ultra Trace Organics)		rd or urgent TA	T (Elst du	e dete):	000 5501			R	tr Seal Intact ov rozen ise	1.1.2				No	
	21-27477 - Task 3J for Contamination		ALS QUOTE	: NU.:	SY-236-18	_			1 (2)	ENCENUMBE	5 6		ensempte la		海市市	- 160 C - J.			
	MANAGER: Jacqui Halichurch	CONTACT P	i H: 0447 202 51	80				OF	1 2	· O	5 6		comment:					31 .97	
SAMPLER:	Sarah Eccleshall	SAMPLER N	IOBILE: 0459	546 332		BY:		RECE	IVED BY:			RELINQUIS	HED BY:			RECE	IVED BY:		
000 emaile	ed to ALS? (YES / NO)	EDD FORMA	T (or default):]S·ECC	(eshore	1	1											
	orte to: sarah.eccleshall@ghd.com; jacqui.h ice to (will default to PM if no other addresse		<u>.</u>	·····		8 z	1:0		(TIME:			DATE/TIME	2			DATE	TIME:		
	SISPECIAL HANDLING/STORAGE OR DIS				<u>1</u>			_				- L							
uns Use	SAMPLE MATRIX SOLO	OFT/ALS: STRATER (W)		conridue					ANALY Where Metals	SIS REQUIRE are required, s	D including s pecify Total (SUITES (NB. So unfiltered bottle	ite Codes mu required) or D	st be liste I issolved	d to ettra (field tille	st suite price ared bottle re	i) aquired).		
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESE (refer to code	ERVATIVE s below)	CONTAINERS CONTAINERS B7 Suite: TRH, BTEX,	AH, Metals (8)	TBT	Noxins	Cyanide	Årnmonia	20	Sa	Voisture content					
12	SEDOS_0.0-0-1	4/10/18 16:00	S	B. Jar			<u> </u>					<u> </u>	<u>u</u>	2					
13		4/10/18	Ĩ			1			<u> </u>										-
N N	Stors LA-LI	4/10/18		+									1						-f
15	some lise to	4/10/18		+															
	SEUS_ 1-1-1-0	4/10/10	╞╾╏╌	<u>∤</u> ∤			_ -				1								
l'o im	SEDOS 7-0-2.1	410/10												+				+ +	-+;
\mathbf{n}	SERUS_25-26	4/10/14		<u> </u>											+-			-	
	Seines	LICERS	*	*	<u> </u>	¥													
18	FSOL	4/10/18		L 4	Sor .	41													
19	FSOZ	1			1	91													_ 1
20	F503	-			N	5													
21	F001			/ ! }		(1							1	6				1-+	
		₩				ľ		· · · ·		· · ·		-					- # C'		
22	FDOZ		V				\$ ³										<u> </u>	-┼┼	+
	uner Codes: P = Unpreserved Plastic; N = Nitric HCI Preserved; VB = VCA Vial Socium Bisuiphats Inte Preserved Bottle; E = EDTA Preserved Bottles	Preserved Plastic: ORC = Nitr	ic Preserved OR	C: SH = Socitum Hydr	TOTAL			served Pla	astic; AG = Án	Iber Gfass Unp	reserved; AP	- Airfreight Unp	reserved Plas	tic					

enu	CHAIN OF CUSTODY ALS Laboratory please text 3	Ph: 06 8355 DBRISBAN Ph: 07 3241 DCLAOSTN Ph: 07 2747	E21 Burma Road Pr E890 Er adelside M E 32 Shand Street S 17222 Er samples b DVE 46 Callemondal 5600 Er gladstone 4	sispiobat.com Ph: tafford QLD 4063 UN isbane@sispiobal.com Ph: 1 Dave Clinton QLD 4660 DM	07 4944 0177 E: MELBOURNE 2-4 : 03 8549 9500 E: NUDGEE 27 Sydna	vr Road Mackay QLD 4740 mackay@alsglobal.com Westall Road Springvale M samples mellocume@alsgl ny Road Mudgee NSW 285 mudgee.mall@alsglobal.co	F 1C 3171 05a3.com 0	Ph: 02 4968 9 DNOWRA Ph: 02442; DPER	LE & Rose Gum R M33 E: samples.n 4/13 Geary Plac 3 2063 E: nowraf 31H 10 Hod Way 8 9209 7655 E: sa	ewcastie Galsok e North Nowra N Palsolobal.com Malaga WABOS	batcom 5W 2541 0		Ph: 02 CITCM Ph: 07 CIWO	2 8784 8555 MNSVILLE 1 7 4795 0600 LLONGONG	89 Woodpark Rea E: samples sydne 4-15 Oesma Cou E: townsavile.envi 99 Kenny Street E: portkembla @a	eyଙ୍କି alsgiobal.co rf Bohle OLD 44 Ironmental ଫିalsgi : Wollontman NS	Qm 818 sobal.com
	GHD Pty Ltd level 15, 133 Castlereagh St, Sydney		TURNAROU (Standard TAT	ND REQUIREMENT: Star may be longer for								LABORAT	6 (A) (A)	ONLY (Circle)'		
	1: 21-27477 - Task 3J for Contamination		some tests e.g. ALS QUOTE	Ultra Trace Organica)		irgent TAT (List due)	<u> </u>	COC SEQU	ENCE NUMB	ER (Circle)		ev Sõg indak evi materiak			vier versielit/* ver		No.
ORDER	UMBER:2127477		1				4		۵.			orn Semcle T	74 J 54		A STATE		
PROJECT	MANAGER: Jacqui Hallchurch	CONTACT	PH: 0447 202 5	90			ĊF:	1 2	• •	5 6	7 Other	comment,	n an ar Se let s				
	t Sarah Eccleshall		OBILE: 0459	//ww	UISHED BY:	<i>a</i>	RECEIV	/ED 8Y:			RELINQUE	SHED BY:			RECEIVE	D BY:	and the second second
<u> </u>	lied to ALS? (YES / NO)		AT (or default):		50	cleand	DATE	11.407				•.					
	oice to (will default to PM if no other addresse:				10/18	21:00	DATE/TI	IME:			DATE/TIME	:			DATE/TIN	NE:	
	TS/SPECIAL HANDLING/STORAGE OR DIS						L										
Sec. A						<u>8</u>			•	• -:						•	
USE	SAMPLE . MATRIX SOLD			ંગર તેમ છે. વેમ છે. ગામ છે. ગામ છે. વેમ છે. ગામ છે. ગામ છે. ગામ છે.	746		Wh	ANALY here Metals	SIS REQUIRE are required, s	D including S pecify Total (i	urres (NB. Su Infiliered bottle	ite Codes mu required) or I	xst be listed Diseolwood	l to attract (licid filtere	suite price) ed bottle require	ed).	
						۲. ۲.					[- T			
			×		TOTAL		-	•	-				ŧ				
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	IOTA	luite: TAH, 1 , Metals (8)						Į	content				
			2		្រទ័	A Me		oxins	Cyanide				sture	ľ			
						B7 Su PAH,		Dio	ð	- FA	100	GSA	Molstu				
23	READI_00-0.1	4/10/18	5	B, Sar	2									··••			
24	READI 0.5-0.6	1	1	r	2												
25	READI_ 1.0 -1.1]			2												1
26	KE401 1.5-1.6				2	1 1											
27	READI 1-0-2.1				2												+
28	Perez 20 Ci		· .		2	· · · ·			~								
	16 101 2.5-66	┝───┦────	+									<u> </u>	+ +		-		++
29	5.0-5.		ll		2	<u> </u>						ļ)
30	11.401 3.2-3.5		P	Ψ	2							L					
3	READZ 0.0-0.1				2												1
32	NEAOZ 0.5-0-6 NEAOZ 10_1.1 NENCE, 1.5-1.6				2												
32	1 EA07 40 1.1			1/	2												
201	PELON I C_1.1	/	1	¥	7				<u> </u>				┽┈┼		┼┼┢		
	マピアレビー・レントリーク!	- .	1 5	1	10		l					1		1			- 1 - 17

··· ··

	•		دو. موجع																		
	Enui	CHAIN OF CUSTODY ALS Laboratory: pipese ick ->	Ph: 08 8359 (DBRISBANE Ph: 07 3243 DGLADSTO Ph: 07 747 (21 Burma Road Poo 2890 E: adetaide & al 32 Shand Street Sta 7222 E: samples bits NE 46 Calismondah I 5000 E: gladstone & .	spiobal.com	Ph: 07 CIMEL Ph: 03	4944 0177 E: ma BOURNE 2-4 W 8549 9600 E: sa	Road Mackay Ol Iokay® alsolobal esta® Road Sprin mples melbourne Road Mudgee Ni Idges mail @also	com gvale VIC 3171 «@alsgtobal.com	Ph: 02 4968 94 DNOWRA 4 Ph: 024423 OPEFI	E6 Rose Girm Ro 33 E: samples.ne (13 Geary Place 2063 E: nowra@ I'H 10 Hod Way N 9209 7655 E: sar	wcasile@aisgX . Korth Nowrs N alsglobal.com Aslága WA 605	balcom - SW 2541 Q	•	Ph: 0 DTO Ph: 0 DWC	2 8784 8555 8 WNS VILLE 14 7 4796 0600 8 KLONGONG	: samples.s -15 Desma : townssville 99 Kenny St	Road Smählis volney & alsolo Court Bohle O Lenvironmentals ureet Woldsnee a @alsolobal.co	obal.com 3LD 4818 @alsgiobal.co ang NSW 250	om.	j
	CLIENT;	GHD Pty Ltd		TURNAROUN	D REQUIREMENTS	D Standa	ud TAT (List	due date):					FOR	ABORAT	nyusi	CONEX-(2(rcto):				
6	óffi ce: Í	evel 15, 133 Castlereagh St, Sydney		(Standard TAT n some tests e.g.,	ay be longer for Ultra Trace Organics)	Schion S	tandard or urg	ent TAT (Lis	t due date):					wseiliger	K.				NO.		
Ē	PROJECT:	21-27477 - Task 3J for Contamination		ALS QUOTE	NO.:	SY-236-1	8			COC SEQUE				Se î "Mizenikoe	中的				No.it		
-		MBER:2127477			·				COC:		° @			m Sample'' Te	moeratur	e ón: Recelo Les Hard	5				
- 1-		MANAGER: Jacqui Helichurch		H: 0447 202 58		RELINQUE			OF:	i 2 EIVED BY:	3 0	5 6	7 DE	CONCIENTS	RAT		BECE	IVED BY:			緧
		ed to ALS? (YES / NO)		OBILE: 0459 5	40 332		ic les	hay	neo.								1.202				
-		wisto: sarah.eccieshall@ghd.com; jacqui.ha							DATE	ytime:			DATE/TIME	8			DATE	TIME:			
- F		ice to (will default to PM if no other addresse:	_			41	10/ 18	Zl:	∞												
	COMMENT	S/SPECIAL HANDLING/STORAGE OR DIS	POSAL:			•												_			
) includion 9	uites (NB. Su	uite Corles mu	et be liste	d to altract.	aujie pricej		<u> </u>		1
2010	SAALS SUSE	SANALE MATROX BOLED	SINATEH (W)		્રાજ્વાના પ્રાપ્ત	161, 521 - <i>1</i> 				Where Matais											
								ž					1		T				T		
-	LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESE (refer to codes		TOTAL	B7 Sulke: TRH, BTEX, PAH, Metais (8)	TBT	Dioxins	cy anicle	mmonia	100	OSA	laisture content						Hold
ŀ	·	12147 7 0 21	1. 1.0.114	5	3,4		2	<u> </u>	<u> </u>	<u> </u>		4	<u> </u>	<u> </u>	2						<u></u>
·	35	LEA07_20-2.1	T			<u>~</u>	2							<u> </u>	+		-		+ 1		¥.
	36	READE 7.2.2.	4/10/18	2	6,30														+	-+	싄
	37	READZ 3.0-3.1	4/10/18	5	10,30	<u> </u>	2													<u> </u>	4
	38	TRIP Denle	4/10/18	5	J.			X													
		GOID SPIKE	611018	5	Jer	~	I	*											اخدا		
Ī		No al	10/10/10	1 1 1	VALAG	.1/	24	\star		Please	. ask	Sept	or les	stand	and	m	sore	ow	385.		
	40	KN_UI		↓ ~	17 N 18		<u> </u>			1		-			+					i t	
eive	139	IKIP Blank	2/10/18	<u>></u>	10	<u>~</u>				051	2			<u> </u>	+				┿╌┤	 	
	41	RN01_01	4/10/18		<u>v,v, n</u>	, A4	4			REV	~		+	<u>+</u>	-				┼╾┥	┢━━┼━	
	42	TEIP SPIKE	2/10/18	S	Jar				SI	10/18			<u> </u>		<u> </u>			<u> </u>		⊢∔	
	43	TSC					'-	Γ		200	10			l							
	-12						1		B	04				ŀ							
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	1		·							1						+ +		
	file (catala)		A that are a start from the	t. A TANA MARA						┼───								-+-			-
	inne Suite					TOTA															
		alner Codes: P = Unpreserved Plastic; N = Nitric	Described Martin ADA Lit	ric Preserved OR	C; SH = Sodium Hydro AV = Ainfreight Unpres	xide/Cd Pres	erved; S = So	dium Hydraxid	e Preserved P	lastic; AG = Am	ber Glass Unp	reserved; AP	- Alifreight Unp	reserved Plas	tic						ł

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1829388		
Client Contact Address	E GHD PTY LTD MS JACQUI HALLCHURCH LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Contact : Address :	Environmental Division Sydney Brenda Hong 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: jacqui.hallchurch@ghd.com : +61 02 9239 7100 : +61 02 9239 7199	Telephone :	Brenda.Hong@alsglobal.com (02) 8784 8504 +61-2-8784 8500
Project Order number C-O-C number Site Sampler	: 2127477 : 2127477 : : 21-27477 - Task 3J for Contamination : SARAH ECCLESHALL	Quote number	1 of 4 ES2018GHDSER0015 (SY/236/18) NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Recei Client Requested Du Date		Issue Date Scheduled Reporting Dat	e 06-Oct-2018 te 1 0-Oct-2018
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Client Drop Off	Security Seal Temperature No. of samples received	: Not Available : 10.3 - Ice present / analysed : 43 / 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Updated SRN Please note that sample 41-43 have been added as per client request.
- Updated SRN: only samples 1-40 are due on the 10/10/18, samples 41-43 are due on the 11/10/18
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Updated SRN: Please note that the scheduled reporting date has not been confirmed with laboratory management due to the late arrival of sample 41-43. If the scheduled reporting date is not achievable ALS will be in contact with you.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL

as the determin tasks, that are incl lf no sampling default 00:00 on	uded in the package. time is provided, the date of samplin sampling date wi	content and preparation the sampling time will g. If no sampling date	(On Hold) SOIL No analysis requested	SOIL - S-18 (NO MOIST) TRH(C6-C9)/BTEXN with No Moisture for TBs
ES1829388-001	04-Oct-2018 10:15	SED06_0.0-0.1	 ✓ 	
ES1829388-002	04-Oct-2018 10:30	SED06_0.5-0.6	 ✓ 	
ES1829388-003	04-Oct-2018 10:40	SED06_1.0-1.1	 ✓ 	
ES1829388-004	04-Oct-2018 10:45	SED06_1.5-1.6	 ✓ ✓ 	
ES1829388-005	04-Oct-2018 10:55	SED06_2.0-2.1	✓ ✓	
ES1829388-006	04-Oct-2018 11:00	SED06_2.5-2.6	✓ ✓	
ES1829388-007	04-Oct-2018 11:10	SED06_3.0-3.1	✓ ✓	
ES1829388-008 ES1829388-009	04-Oct-2018 11:15 04-Oct-2018 11:20	SED06_3.5-3.6 SED06_4.0-4.1	▼ √	
ES1829388-009	04-Oct-2018 11:25	SED06_4.0-4.1	▼ √	
ES1829388-010	04-Oct-2018 00:00	FD03	▼ √	
ES1829388-011	04-Oct-2018 16:00	SED05_0.0-0.1	▼ √	
ES1829388-012	04-Oct-2018 00:00	SED05_0.5-0.6	▼ √	
ES1829388-013	04-Oct-2018 00:00	SED05_0.0-0.0	• •	
ES1829388-015	04-Oct-2018 00:00	SED05_1.5-1.6	√	
ES1829388-016	04-Oct-2018 00:00	SED05_2.0-2.1	•	
ES1829388-017	04-Oct-2018 00:00	SED05_2.5-2.6	· •	
ES1829388-018	04-Oct-2018 00:00	FS01	· •	
ES1829388-019	04-Oct-2018 00:00	FS02	· •	
ES1829388-020	04-Oct-2018 00:00	FS03	· •	
ES1829388-021	04-Oct-2018 00:00	FD01	· •	
ES1829388-022	04-Oct-2018 00:00	FD02	· •	
ES1829388-023	04-Oct-2018 00:00	REA01_0.0-0.1	√	
ES1829388-024	04-Oct-2018 00:00	REA01 0.5-0.6	· ✓	
ES1829388-025	04-Oct-2018 00:00	REA01 1.0-1.1	1	
ES1829388-026	04-Oct-2018 00:00	REA01_1.5-1.6	✓	
ES1829388-027	04-Oct-2018 00:00	 REA01 2.0-2.1	1	
ES1829388-028	04-Oct-2018 00:00	 REA01 2.5-2.6	1	
ES1829388-029	04-Oct-2018 00:00	 REA01 3.0-3.1	✓	
ES1829388-030	04-Oct-2018 00:00	REA01_3.4-3.5	1	
ES1829388-031	04-Oct-2018 00:00	REA02_0.0-0.1	1	
ES1829388-032	04-Oct-2018 00:00	REA02_0.5-0.6	✓	
ES1829388-033	04-Oct-2018 00:00	REA02_1.0-1.1	1	
ES1829388-034	04-Oct-2018 00:00	REA02_1.5-1.6	1	
ES1829388-035	04-Oct-2018 00:00	REA02_2.0-2.1	✓	
	1			

ES1829388-036 04-Oct-2018 00:00 REA02_2.5-2.6 1 ES1829388-037 04-Oct-2018 00:00 REA02_3.0-3.1 1 ES1829388-038 02-Oct-2018 00:00 Trip Blank 1 ES1829388-039 02-Oct-2018 00:00 Trip Blank 1 ES1829388-042 02-Oct-2018 00:00 TRIP SPIKE 1 ES1829388-043 02-Oct-2018 00:00 TSC 1					
ES1829388-037 04-Oct-2018 00:00 REA02_3.0-3.1 ES1829388-038 02-Oct-2018 00:00 Trip Blank Image: Client sampling Client sample ID date / time Image: Client sample Client sample ID date / time Image: Client sample Client sample ID date / time Image: Client sample Client sample ID date / time Image:				(On Hold) SOIL No analysis requested	SOIL - S-18 (NO MOIST) TRH(C6-C9)/BTEXN with No Moisture for TBs
ES1829388-038 02-Oct-2018 00:00 Trip Blank ES1829388-039 02-Oct-2018 00:00 Trip Blank ES1829388-042 02-Oct-2018 00:00 TRIP SPIKE ES1829388-043 02-Oct-2018 00:00 TSC	ES1829388-036	04-Oct-2018 00:00	REA02_2.5-2.6	1	
ES1829388-039 02-Oct-2018 00:00 Trip Blank Image: Client sample result ES1829388-043 02-Oct-2018 00:00 TSC TSC TSC	ES1829388-037	04-Oct-2018 00:00	REA02_3.0-3.1	✓	
Matrix: WATER Client sampling Client sample ID	ES1829388-038	02-Oct-2018 00:00	Trip Blank		✓
ES1829388-043 02-Oct-2018 00:00 TSC Matrix: WATER Image: Client sampling date / time Client sample ID Image: Client sample ID	ES1829388-039	02-Oct-2018 00:00	Trip Blank	✓	
Matrix: WATER Laboratory sample Client sampling Client sample ID ID date / time ES1829388-040 04-Oct-2018 00:00 RN_01	ES1829388-042	02-Oct-2018 00:00	TRIP SPIKE		✓
ES1829388-040 04-Oct-2018 00:00 RN_01	ES1829388-043	02-Oct-2018 00:00	TSC		✓
	Laboratory sample	date / time		WATER - W-26T TRH/BTEXN/PAH/Total 8 Metals	
ES1829388-041 04-Oct-2018 00:00 RN01_1	ES1829388-040	04-Oct-2018 00:00	RN_01	1	
	ES1829388-041	04-Oct-2018 00:00	RN01_1	✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (Brisbane)

ACCOUNTS FATABLE (BISDalle)		
- A4 - AU Tax Invoice (INV)	Email	ap-fss@ghd.com
GHD LAB REPORTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	ghdlabreports@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ghdlabreports@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ghdlabreports@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ghdlabreports@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	ghdlabreports@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	ghdlabreports@ghd.com
JACQUI HALLCHURCH		
 *AU Certificate of Analysis - NATA (COA) 	Email	jacqui.hallchurch@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jacqui.hallchurch@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jacqui.hallchurch@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jacqui.hallchurch@ghd.com
- Chain of Custody (CoC) (COC)	Email	jacqui.hallchurch@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	jacqui.hallchurch@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	jacqui.hallchurch@ghd.com
SARAH ECCLESHALL		
 *AU Certificate of Analysis - NATA (COA) 	Email	sarah.eccleshall@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sarah.eccleshall@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	sarah.eccleshall@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sarah.eccleshall@ghd.com
- Chain of Custody (CoC) (COC)	Email	sarah.eccleshall@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	sarah.eccleshall@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	sarah.eccleshall@ghd.com

CERTIFICATE OF ANALYSIS

Work Order	ES1829388	Page	: 1 of 6
Client	: GHD PTY LTD	Laboratory	Environmental Division Sydney
Contact	: MS JACQUI HALLCHURCH	Contact	: Brenda Hong
Address	: LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 9239 7100	Telephone	: (02) 8784 8504
Project	: 2127477	Date Samples Received	: 04-Oct-2018 21:00
Order number	: 2127477	Date Analysis Commenced	: 05-Oct-2018
C-O-C number	:	Issue Date	: 10-Oct-2018 13:07
Sampler	: SARAH ECCLESHALL		Hac-MRA NATA
Site	: 21-27477 - Task 3J for Contamination		
Quote number	: SY/236/18		Accreditation No. 825
No. of samples received	: 43		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 6
Work Order	: ES1829388
Client	: GHD PTY LTD
Project	: 2127477

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP080: The trip spike and its control have been analysed for volatile TPH and BTEX only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page	: 3 of 6
Work Order	: ES1829388
Client	: GHD PTY LTD
Project	2127477

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Trip Blank	TRIP SPIKE	TSC	
	Cli	ient sampli	ng date / time	02-Oct-2018 00:00	02-Oct-2018 00:00	02-Oct-2018 00:00	
Compound	CAS Number	LOR	Unit	ES1829388-038	ES1829388-042	ES1829388-043	
				Result	Result	Result	
EP080/071: Total Petroleum Hydro	carbons						
C6 - C9 Fraction		10	mg/kg	<10	22	28	
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fractio	ns				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	27	33	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	12	
(F1)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	8.4	10.4	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1.0	1.2	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	5.6	6.7	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2.2	2.6	
^ Sum of BTEX		0.2	mg/kg	<0.2	17.2	21.1	
^ Total Xylenes		0.5	mg/kg	<0.5	7.8	9.3	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	88.4	92.5	99.2	
Toluene-D8	2037-26-5	0.2	%	89.9	91.4	101	
4-Bromofluorobenzene	460-00-4	0.2	%	87.9	91.1	99.7	

Page	: 4 of 6
Work Order	ES1829388
Client	: GHD PTY LTD
Project	2127477

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RN_01	RN01_1	 	
	Ci	lient sampli	ng date / time	04-Oct-2018 00:00	04-Oct-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1829388-040	ES1829388-041	 	
				Result	Result	 	
EG020T: Total Metals by ICP-N	IS						
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	 	
EG035T: Total Recoverable M	ercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EP075(SIM)B: Polynuclear Aro	matic Hydrocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	 	
^ Sum of polycyclic aromatic hydr	rocarbons	0.5	µg/L	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	 	
EP080/071: Total Petroleum Hy	ydrocarbons						
C6 - C9 Fraction		20	µg/L	<20	<20	 	
C10 - C14 Fraction		50	µg/L	<50	<50	 	
C15 - C28 Fraction		100	µg/L	<100	<100	 	
C29 - C36 Fraction		50	µg/L	<50	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	 	

Page	: 5 of 6
Work Order	ES1829388
Client	: GHD PTY LTD
Project	2127477

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RN_01	RN01_1	 	
	Cli	ent samplii	ng date / time	04-Oct-2018 00:00	04-Oct-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1829388-040	ES1829388-041	 	
				Result	Result	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	าร				
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	 	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L	<20	<20	 	
>C10 - C16 Fraction		100	µg/L	<100	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	 	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	 	
Toluene	108-88-3	2	µg/L	<2	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	 	
^ Total Xylenes		2	µg/L	<2	<2	 	
^ Sum of BTEX		1	µg/L	<1	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	<5	 	
EP075(SIM)S: Phenolic Compound Su	rrogates						
Phenol-d6	13127-88-3	1.0	%	26.9	20.4	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	57.3	50.7	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	37.7	49.0	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	84.8	66.3	 	
Anthracene-d10	1719-06-8	1.0	%	75.3	66.2	 	
4-Terphenyl-d14	1718-51-0	1.0	%	87.2	78.8	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	103	105	 	
Toluene-D8	2037-26-5	2	%	102	104	 	
4-Bromofluorobenzene	460-00-4	2	%	97.6	99.7	 	

Page	: 6 of 6
Work Order	ES1829388
Client	: GHD PTY LTD
Project	2127477

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

													2.5						
£n	CHAIN OF CUSTODY ALS Laboratory: please tick →	Ph: 08 8359 □BRISBAN Ph: 07 3243 □GLADST0	E 21 Burma Road Pool 0090 E: adelaide@als IE 32 Shand Street Sta 7222 E: samples.brist DNE 46 Callemondah D 5600 E: gladstone@a	sglobal.com fford QLD 4053 pane@alsglobal.com Drive Clinton QLD 4680	Ph: 07 4944 (DMELBOUF Ph: 03 8549 DMUDGEE 3	8 Harbour Road Ma 0177 E: maokay@al RNE 2-4 Westall Roa 9600 E: samples.me 27 Sydney Road Mu 6735 E: mudgee.ma	sglobal.com d Springvale VIC 317 Ibourne @alsglobal.ci igee NSW 2850	Ph: 02 4968 9 1 DNOWRA IM Ph: 02442 DPE	LE 5 Rose Gum 1 9433 E: samples. A 4/13 Geary Plac 23 2063 E: nowra RTH 10 Hod Way 8 9209 7655 E: s	newcastle@alsglo ce North Nowra N @alsglobal.com Malaga WA 609	obal.com ISW 2541 20		Ph: 02 8 DTOWN Ph: 07 4 DWOLL	784 8555 E: ISVILLE 14- 796 0600 E: ONGONG 9	samples.syd 15 Desma Ce townesville.er 9 Kenny Stre	bad Smithfield ney@alsgloba burt Bohle OLL wironmentat®a et Wollongong Palsglobal.con	il.com D 4818 ilsglobal.com I NSW 2500	:	
OFFICE	: GHD Pty Ltd : level 15, 133 Castlereagh St, Sydney CT: 21-27477 - Task 3J for Contamination NUMBER:2127477	· · · · · · · · · · · · · · · · · · ·	(Standard TAT m	Ultra Trace Organics)	SY-236-18	6.		COC SEQ	Jana JENCE NUMB	ER (Circle) 5 6	Cuero Frise	LABORATO dy Seal Intact set texton los om Sample Te	? brička pres	ent úpon ro	Y)	No No C	S va -NA	
SAMPL COC er Email F	CT MANAGER: Jacqul Hallchurch ER: Sarah Eccleshall nailed to ALS? (YES /_NO) leports to: sarah.eccleshall@ghd.com; jacqui ha nvoice to (will default to PM if no other addresses	SAMPLER EDD FORM/ Ilchurch@ghd.com	PH: 0447 202 580 MOBILE: 0459 54 AT (or default):		relinquishei S.E.C date/time: S/(C	celu	n	EIVED BY:	3 4 02EW 8 8;	O: Bopn		comment. SHED BY:	nco n a / A	/ Fo	sis:_			- 42	tinte
COMM ALS USE	ENTS/SPECIAL HANDLING/STORAGE OR DISI SAMPLE-D MATRIX: SOLID (IETAILS		CONTAINE	R INFORMATIO	Ń		ANAL ^V Where Metals	/SIS REQUIRE are required, s	D including S	UITES (NB. St Infiltered bottle	required) or D	st be listed t lissolved (fi	ő áttract si	lite priče))ate:	CS B	1091 -1061	0028 100
LABI	D SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESEI (refer to codes	RVATIVE below)	CONTAINERS CONTAINERS B7 Suite: TRH, BTEX,	ran, wetais (d) TBT	Dioxins/Furans	Cyanide	Аттоліа	TOC	At	Moisture coatent		x ₩	TBT		Bris	
1		5/10/14	5	2xbor,		3		\times	×	×	X	X	X						• ;
23	SEDOG_0.5+0 SEDOG_1.0-1.5					_	< ×	*	×	*	×	×	X					<u>×</u>	-
4	SEP06 _ 1.5-2.0 SEP06 _ 2.0 - 2.5					7				*						· · · ·		X	
67	66006 - 2.5 - 3.0 SEPO6 - 3.0 - 3.5			Jar,		3												× ×	
8	5606 5.5 - 4.0 - 5606 - 4.0 - 4.4		V	Jer,		2 *													
10	SEDOS_0.0-0.5 SEDOS_0.5-1.0 SEDOS_1.0-1.5		y dney Work Orde	ntal Divisio r Reference 329588	n				X X	X		X	×			· · · · · · · · · · · · · · · · · · ·			•
V = VOA	ontainer Codes: P = Unpreserved Plastic; N = Nitric P Vial HCI Preserved; VB = VOA Vial Sodium Blaulphate Acetate Preserved Bottle; E = EDTA Preserved Bottles;	Preserved; VS = V ST = Sterile Bottle	Nephone : - 61-3			S = Sodium Hvo	roxide Preserved Amber Glass; H	Plastic; AG = An = HCl preserved	nber Glass Unp Plastic; HS ≂	reserved; AP - HCI preserved	Airfreight Unpr	eserved Plast tle; SP = Sulfu	ic Inic Preserve	od Plastic	F = Forma	klehyde Pre	served Gi	ass;	

• S.....

								,													
÷ .	4																				
,												· ·		- 2							
enu:	CHAIN OF CUSTODY ALS Laboratory	- Ph: 08 8359 - BRISBANK - Ph: 07 3243 - GLADSTO - Ph: 07 7471	21 Burma Road Poo 0890 E: adelaide@al; 232 Shand Sireër\$ia 7222 E: samples,Dia NE 46 Callemondan I 5600 E: glaostone@a	raka SA 5005 golpbal.com trans Cabp 4053 gane Calsglobal.com Olive Chinn QLD 4680 alsglobal.com	Ph: 07 4944 OMELBOU Ph: 03 8549 OMUDGEE	0177 E: ma IRNE 2-4 We 9 9600 E: sar 27 Sydney I	Road Mackay QE ckay@alsglobal.c stall Road Spring npies.melbourne Road Mudgee NS dgee.mail@alsgl	šým Ivale VIC 3171 @alsolobal.com IW 2850	⁹ Ph: 02 49 68 94: DNOWRA 4 Ph: 024423 DPER1	33 E: samples.ne V13 Geary Place 2063 E: nowra로 'H 10 Hod Way I	ad Warabrook N wcastle @alsglob North Nowra NS alsglobal.com Aalaga WA 6090 mples.perth @alsg	al.com W 2541		Ph: 02 1170 Ph: 01	2 8784 855 WNSVILLE 7 4796 060	-289 Woodp 55 E: sample E 14-15 Desi 00 E: townesi NG 99 Kenny 25 E: portker	es.sydney ma Court F ville.environ	@alsglobal Bohle QLD nmental@al	l.com 0.4618 Ilsglobal.com	m	
CLIENT:	GHD Pty Ltd	<u> </u>	<u> </u>		Standar	ÉAT (List	due date):					FOR	ABORATO	RY USI	EONLY	(Circle)					
	level 15, 133 Castlereagh St, Sydney	·····	(Standard TAT m		Non Stand	2 C	54. v	due date):		•		Custor	y Seal Intact?	e vij			Yee		No.		NA.
PROJECT:	21-27477 - Task 3J for Contamination		ALS QUOTE		SY-236-18				COC SEQUE		R (Circle)	18 - A.	e ('hozen ice'	14 - A	1. 6 M	N.	уюз.		No		NA
	JMBER:2127477		<u> </u>					coc:		23 4	5 6		m Sample Tel	mperatur	e on Reci	elpt			* C		客
PROJECT	MANAGER: Jacqui Hallchurch		H: 0447 202 580		r		·	OF:	1 2	3 4	66	100 A 12 12 12 12 12 12 12 12 12 12 12 12 12	omment.					A DY		1.19	
	: Sarah Eccleshall		OBILE: 0459 54	46 332	RELINQUISHE	ED BY:		RECI	EIVED BY:			RELINQUIS	HED BY:			MEQ	CEIVED	51:			
· · · · · · · · · · · · · · · · · · ·	ed to ALS? (YES / NO)		AT (or default):		DATECTIME			-	E/TIME:			DATE/TIME				DA'	TE/TIME	F:			
	orts to: sarah.eccleshall@ghd.com; jacqui.h		· · · · ·	· · · ···-	DATE/TIME:		,	. DAN	21 I WE.		1	DATE TIME					•				
	ice to (will default to PM if no other addresse			<u> </u>		_					244 (20)	المشكنين الم	2								
COMMENT	S/SPECIAL HANDLING/STORAGE OR DIS	SPOSAL:									· .	·					<u></u>				
ALS USE	SAMPLE MATRIX: SOUD			CONTAINE	R INFORMATIC	× ·			ANALYS Where Metals			UITES (NB. Sui nfiltered bottle						I).	······		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESE (reler to codes	RVATIVE below)	TOTAL CONTAINERS	B7 Suite: TRH, BTEX, PAH, Metals (8)	* TB 1	Dioxins / Curay	Cyanide	Ammonia	100	PSD	Moisture content							Hold
	SED010-0.1	5/10/18	S	Jar, B		2	X	X	\mathbf{X}	\sim	\sim	X	X	X					<u> </u>		
14	56D24 0.5-0 C	5/10/18	S	Jor B		2						-		ſ							X
1253	SED04 1.0-1.1	5/10/18	S	VI D		2	X	X	Ň	χ	×	V	X	\times							
16	eentities	SIIONS	S	Jac B		2					1										\overline{X}
17	SCD 1 2 2-71	210/18	S	dar 1	3	Z							• •	- ` <u>.</u>							$\overline{\mathbf{X}}$
18	SEDUT_LO 21	SIUTO			3	2				· .				-						-	~
	08004.2.5-24	151.018	5	Jar 1	B	2			-						$\left \right $			-		-	$\overline{\mathbf{x}}$
19	FD09	5/10/10	2	90 1	2	$\frac{1}{2}$								+	┝──┼		+	-	┢╼╍╊		
20	<u>F809</u>	5/10/18		200 1-	2	, 									+			+	┝		X
21	TRIP SPIKE	5/10/16	S	Jur I	7						ļ		ļ		\downarrow						
22	TRIP BLANK	5/16/18	<u> </u>	Jav B	;		\succ						ļ								
23	RNO2	5/10/18	W	AGE, ZNV,	N	4		. 4.	Plene	che		for S	torday	7 1	ring	sola	a	al	an		
	F008	5/10/6	- 3	And the second			X	X	۲ ۲	<	×	ľ××	Å	X	22	orveri	7	* =		0	
	almer Codes: P = Unpreserved Plastic; N = Nitric						ium Hydroxide	Procenyort P		ner Glass Linn	reserved: AP	Airfreight Uppe									
V - VOA Via	<i>ainer Codes:</i> P = Unpreserved Plastic; N = Nitric il HCl Preserved: VB = VOA Vial Sodium Bisulpha:	Preserved Plastic; ORC = Nil le Preserver: VS = VOA Vial S	unc Preserved OHU Sulfuric Preserved:	, an = acquiring Hydro AV = Aintreight Unotes	served Vial SG =	Sulfuric Pr	eserved Ambe	Glass; H=	HCI preserved	Plastic; HS =	HCI preserved	Speciation bot	tle; SP = Sulft	uric Pres	erved Pla	astic;F≖f	Formalde	hyde Pre	eserved C	Glass;	

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ET = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

*

٠

* `\$~

ing Starting Starting Starting

1

· Sector

4

ĩ

Ŵ.

1993 <u>- 1995 - 1</u>996 - 1997 -

enui	CHAIN OF CUSTODY ALS Laboratory: please tick →	Ph: 08 8359 DBRISBAN Ph: 07 3243 DGLADSTC	0890 E: adelaide@al E 32 Shand Street Sti 7222 E: samples.bris NE 46 Callemondah	Isglobal.com afford QLD 4053 sbane@alsglobal.com Drive Clinton QLD 4680	Ph: 07 DMEL Ph: 03 DMUD	4944 0177 E; m: BOURNE 2-4 W 8549 9600 E; sa GEE 27 Sydney	ackay@alsglobal.cr estall Road Springs mples.melbourne@ Road Mudgee NS\	om vale VIC 3171 Palsglobal.com N 2850	Ph: 02 4968 9 NOWRA Ph: 02442 OPEF	LE 5 Rose Gum F 9433 E: samples.r A 4/13 Geary Plac 33 2063 E: nowra RTH 10 Hod Way 8 9209 7655 E: si	newcastie @aisgi xe North Nowra N @aisglobal.com Malaga WA 60!	obal.com ISW 2541 90		Ph: 02 8 TOWN Ph: 07 4 DWOLL	784 8555 E:: ISVILLE 14-1 796 0600 E:: IONGONG 95	Woodpark Road S samples.sydney@ 5 Desma Court B townesvillo.environr 9 Kenny Street Wo portkembla@alsgl	halsglobal.com ohle QLD 4818 mental@alsglobal bilongong NSW 2	1.60m
	GHD Pty Ltd											FO	R LABORAT	ORY USE	DNLY (GI	ncle)		
	level 15, 133 Castlereagh St, Sydney		some tests e.g	Ultra Trace Organics)		·	ent TAT (List	due date):					iody Seal Intac	2.5 P		¥69	No	
	UMBER:2127477		ALS QUUTE	NU.:	31-230-1	0		coc:		JENCE NUMBI	EH (CITCIE) 5 6		rice (trozen ic dom Sample T	See Sector		201017 198	No *C	
ROJECT	MANAGER: Jacqui Halichurch	CONTACT P	H: 0447 202 58	0				ÓF:	1 2	3 4	5 6	1.2	e comment:					
MPLER	: Sarah Eccleshali	SAMPLER N	OBILE: 0459 5	46 332	RELINQUE	SHED BY:		RECE	EIVED BY:			RELINQU	ISHED BY:		<u>ni delandeterrel</u>	RECEIVED	BY:	<u> 900-01-00</u>
OC emai	led to ALS? (YES / NO)	CHAIN OF CUSTODY Ph: 0 8330 6980 E adduced aligned atom Ph: 0 494 017 E mode ALS Laboratory: please fick -> please fick -> please fick -> please fick -> Ph: 07 343 722 E and/estarted 240 dots Ph: 07 347 250 E and/estarted 240 dots Ph: 07 347 250 E and/estarted 240 dots Ph: 02 849 3000 E estarted Standard TAT may be tonger for some tasks 0.0 Una Trace Outpace Delete 24 were Ph: 02 849 250 E estarted Delete 27 startes Ph: 02 849 250 E estarted Delete 20 Ph: 02 849 250 E estarted Delete 20 Ph: 02 849 250 E estarted Delete 20 Ph: 02 849 250 E estartes Ph: 02 840 250 E estartes Ph:																
		CUSTODY Derroganes Shard Street Stated Quid 403 CMELDQUARE 24 Weak ALS Laboratory: Ph: 073471 SEOU C plastored Responsibilities of Weak Stated Responsibilities of Weak States and Plastored Responsibilities of Weak States and Plastore		DATE	ZTIME:			DATE/TIN	IE:			DATE/TIME:	:					
				·······								<u> </u>				<u> </u>		
OMMEN	TS/SPECIAL HANDLING/STORAGE OR DISF	POSAL:					<u> </u>					•						
ALS USE	SAMPLE D MATRIX SOUD (ETALIS 8) WATER (W)		CONTAINE	RINFORMA	TION		,	ANALY Where Metals	SIS REQUIRE are required, s	D Including S pecify Total (UITES (NB. 5 Infiltered bott	Suite Codes mu e required) or	ust be listed t Dissolved (fi	o attract su ield filtered i	ite price) bottle required).		-
LABID	SAMPLE ID	DATE / TIME	MATRIX			TOTAL CONTAINERS	B7 Sulte: TRH, BTEX, PAH, Metals (8)	TBT	Dioxins	Cyanide	Ammonia	Toc	OSA	Moisture content	-			
5	SEDOS 1-5-20	SUGIE	S	B 2.	der	7								2				++
26	CCD = 2 - 2 - C			ν	<u></u>									++-	_	┟╾╼┼╴╴┦		╀──╀
	Selles - 20 - 23	Received as		5/30							_					┟╼╍╂╼╍╌┦		
	56107 2.3-3.0	SED 05-2.5-2.8		<u> </u>	0									-				<u> </u>
285	SOUS SCRED			· · · · · · · · · · · · · · · · · · ·		ay.	Def.											
29	REA01-0.0-0'S			B,2x	eser	3	\times	X	X		X	X	\times	X				
30	1401 0.5-1.0			Í Í		2					(<u> </u>	12-5	_ε					
31	PEADL LOCIS						$\overline{\mathbf{v}}$		1.1	1.								┢──┼
0.2			<u>├ </u>				~	X	X	<u> </u>								┨──┤-
36	126701-1.5-2.0		<u>}</u> <u>}</u>	¥														
33	1(6HO1_2.0-2.5			B. Ja	\sim	2												
34	READI 2-5-3.0			6,1	Ser	2												
54	READY 2 PEAOL 30-35	SNR		B.	30	2												
6	16A07 2.5-7.0			K.	$\overline{\mathbf{x}}$	5						с ^т .						╞╶₭
												L		+ -				
				an de la composition Antes a composition														•
VOA Via	tiner Codes: P = Unpreserved Plastic; N = Nitric P HCl Preserved; VB = VOA Vial Sodium Bisulphate I	reserved Plastic; ORC = Nitr Preserved; VS = VOA Vial Su	ic Preserved ORC Ilfuric Preserved; /	; SH = Sodium Hydrox AV = Airfreight Unpres	xide/Cd Presei erved Vial SG	rved; S = Sod ≖ Sulfunic Pre	um Hydroxide P served Amber (reserved Pla Glass; H = H	stic; AG = Amb {CI preserved }	ber Glass Unpr Plastic; HS = F	eserved; AP - ICI preserved	Airfreight Unp Speciation bo	oreserved Plast ottle: SP = Sulfi	lic uric Preserve	d Plastic; F	= Formaldehy	de Preserved	Glass;
ZINC ACE	Tate Preserved Bottle; E = EDTA Preserved Bottles;	St = Stenle Bottle; ASS = Pl	astic Bag for Acid	Suphate Soils; B = Ur	npreserved Ba	g	·			o ,						······		

sn	CHAIN OF CUSTODY ALS Laboratory please tick +	Ph: 08 8359 (□BRISBANE Ph: 07 3243 ⊒GLADSTOI		isglobal.com afford QLD 4053 sbane ଜି alsglobal.com Drive Clinton QLD 4680	Ph: 07 DME Ph: 0 DMU	CKAY 78 Harbour 7 4944 0177 E: m; LBOURNE 2-4 W 3 8549 9600 E: sa DGEE 27 Sydney 2 6372 6735 E: m;	ackay∉alsglob lestall Road Sp amples.melbour Road Mudgee	al.com ingvale VIC 3171 ne@alsglobal.com NSW 2850	Ph: 02 4968 INOWR Ph: 0244 IPE	LE 5 Rose Gum F 9433 E: samples.r A 4/13 Geary Plac 23 2063 E: nowra RTH 10 Hod Way 8 9209 7655 E: s	ewcastle∉alsç e North Nowra @alsglobal.com Malaga WA60	lobal.com NSW 2541 190		Ph: 02 8 DTOW Ph: 07 4	8784 8555 E: şa NSVILLE 14-15 4796 0600 E: to LONGONG 99 K	/oodpark Road Smithfi amples.sydney ∉ alsgle 5 Desma Court Bohle C ownesville.environmental Kenny Street Wollonge ertkembla @alsglebal.e	lobal. OLD al & als
OFFICE: PROJECT:	GHD Pty Ltd level 15, 133 Castlereagh St, Sydney 21-27477 - Task 3J for Contamination MBER:2127477		(Standard TAT r	ND REQUIREMENT may be longer for <u>Ultra Trace Organics)</u> NO.:		lard TAT (List Standard or un	-	st due date):	COC SEQ			Cus Free	ELABORAT ody Seal Intac Ice / frozen ic Iom Sample T	117 e bricks pres	sent upon rece	Yes	
PROJECT	MANAGER: Jacqui Hallchurch Sarah Eccleshall ed to ALS? (YES / NO)	SAMPLER M	 H: 0447 202 58 OBILE: 0459 5 T (or default):	46 332	RELINQU	ISHED BY:		OF:	1 2	3 4		7 Othe	r comment: SHED BY:			RECEIVED BY:	
Email Repo Email Invoi	orts to: sarah.eccleshall@ghd.com; jacqui.ha ice to (will default to PM if no other addresses	allchurch@ghd.com s are listed):			DATE/TIM	E:		DATE	/TIME:			DATE/TIM	E:		, ,	DATE/TIME:	_
ALS	S/SPECIAL HANDLING/STORAGE OR DIS Sample 1 Matrix: Solid (JETAILS		CONTAINE	H INFORM	LTION .	· .		ANAL Where Metal	YSIS REQUIRE s are required, s	D including specify Total	SUITES (NB. S (unfiltered bott)	uite Codes m e required) or	ust be listed f Dissolved (fi	lo attract suitr ield filtered b	e price) ottle required).	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESE (refer to codes		TOTAL CONTAINERS	معلدهارم لملائعة	B7 Surte Rem, Brey DAM, Metals)	707	O; OXin huns	lycorde	Annera	70 C		Morth conter		
37	56-104_0.0-0.5	5/0718	5	Bag, Jo	r	3		X	\times	X	\mathbf{x}	×	X		x		
	SEP04-0.5-1.0		15	Bas, 10	i de la companya de l	3					Ĺ	Č					
39	SED04-10-1.5	5/10/18	5	Basi	for	3		$ $ \times	$\boldsymbol{\times}$	$ \times$	\times	X	\times	\times	<		
40	SED04_1.5-2.0	5/10/18	5	Basi	10	2											
41	SED04_2.0-2.5	5210/18	Ş	Barile	1	3											
	FD06	5/10/18	. 5	Jar		21		- 13		Plea	re	tora	Soul	to	Gur	ofins	
1997 ·	FSOG.	SNOILB	5	Jar		21		\times	\times	\mathbf{X}	X	X	X		\times		1
43	\$REA02_0.0-05	5/10/18	5	Bag de	~	3		X	\sim		X	λ	$\boldsymbol{\lambda}$		\mathbf{X}^{\top}		T
44	R6A07 13-5-60	3/10/18	5	Bas	Jar	3			<u>^</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1					T
43	KGA02-1.0-1.5	5/10/18	5	Ban	h	3	•	X	X	X	X	X	×				
46	KEA07 1.5-2.0	5/10/18	5	300 1	6	3						-6-	1		-		1
47)	<u>KEA02 1.5-2.0</u> 2EA02 2.0-2-5	5/10718	.5	Nos h	/	3											1
					TOTAL												+
Water Contai	iner Codes: P = Unpreserved Plastic; N = Nitric P HCI Preserved; VB = VOA Vial Sodium Bisulphate	reserved Plastic: ORC = Nitri Preserved: VS - VOA Viel Su	c Preserved ORC	; SH = Sodium Hydro AV = Airfreight Llooree	xide/Cd Press	erved; S = Sod	ium Hydroxid	e Preserved Pla	stic; AG = An	her Glass Unpi Plastic: 49 -	reserved; AP	- Airfreight Unp	reserved Plas	stic	ad Blacker F		⊥
Z = Zinc Acet	ate Preserved Bottle; E = EDTA Preserved Bottles;	ST = Sterile Bottle; ASS = Pla	astic Bag for Acid	I Sulphate Soils; B = U	npreserved B	a – Guadas Fie ag.	+		ior preserved	iiiaauu; ⊓∂=	nor preserve	- openation DC	we, or = 300	iunic Freserve		= Pormaidenyde P	165

· · · · · ·

41₁₀ 41₁₀

÷

Snui	CHAIN OF CUSTODY ALS Laboratory: please tick →			DMACKAY 78 Harbou Ph: 07 4944 0177 E: m DMELBOURNE 2-4 V Pi: 03 8549 9600 E: s DMUDGEE 27 Sydney Ph: 02 6372 6735 E: m	ackay@alsgloba lestall Road Sprii imples.melbourn Road Mudgee N	il.com ngvale VIC 3171 re@alsglobal.cor NSW 2850	Ph: 02 4968 9 DNOWRA Ph: 02442 DPER	433 E: samples.r 4/13 Geary Piac 3 2063 E: nowra 8TH 10 Hod Way	load Warabrook N lewcastle@alsglot e North Nowra NS @alsglobal.com Malaga WA 6090 amples.perth@als	bal.com SW 2541		Ph: 02 8784 B CITOWNSVIL Ph: 07 4796 0 CIWOLLONG	555 E: sample LE 14-15 Desc 600 E: townes	s.sydney@al: na Court Boh rille.environme r Street Wollo	le QLD 4818 mal@alsglobsi.co ngong NSW 250	om	
LIENT:	GHD Pty Ltd				Standard TAT (Lis	due date):						Bernier Fore in	RY USE ONL	Y. (Circle)			
	level 15, 133 Castlereagh St, Sydney		some tests e.g	nay be longer for Ultra Trace Organics)	Non Standard or u	gent TAT (LI:	st due date):		` .			ty Seal (macr?			Yes	No	, NA
	21-27477 - Task 3J for Contamination		ALS QUOTE	NO.:	SY-235-18				ENCE NUMB	~	1.00	STATE AND CALL	oricka present u		Yes	No	
	IMBER:2127477 MANAGER: Jacqui Hallchurch	CONTACT D	H: 0447 202 58		·		COC		34	(5) 5 (5) 6	17.85	m Sample Ter comment	nperature on Re	сөрт		°C .	
·	Sarah Eccleshall		OBILE: 0459 5		RELINQUISHED BY:			EIVED BY:		<u></u>	RELINQUIS	3		REC	EIVED B	<u>+</u>	
	ed to ALS? (YES / NO)		T (or default):					-									
	orts to: sarah.eccieshall@ghd.com; jacqui.ha						DAT	e/TIME:			DATE/TIME	:		DAT	E/TIME:		
mail invo	ice to (will default to PM if no other addresse	s are listed):			1												
OMMENT	S/SPECIAL HANDLING/STORAGE OR DIS	POSAL:															
ALS USE	SAMPLE / MATRIX: SOLID			CONTAINE	r nformation								t be listed to att issolved (field f				
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESEN		B7 Suite: TRH, BTEX, PAH, Metals (8)	TBT	Dioxins	Cyanide	Ammonia	TOC	OSA	Moisture content				Hold
48	SED1_0.0-0.1	5/10/18	5	B, for	Jar 3		1										X
43	S=DO1 0:0-0.5	5/10/18	5	1	3	×	\mathbf{X}	\sim	\times	$\left \right\rangle$	\mathbf{X}	\times	\times				ig.
50	SEDDI 0.5 0.60	5/10/16	5		3							l'					X
51	SED02-0.0-0.1	5/10/18	5		3												X
52	SEPOZ 0.0-0.5	C110/18	$\overline{\langle}$		3	X		X	X		4	~~~			1		the second
53	SED07 0-5-0.65	5/16/19			3	- /			1 <u>~</u>			×	$\rho \rightarrow -$				X
	SEWC UNDO	510/10	- <u>></u>				1		<u> </u>	+							<u> </u>
54	SED03_0.0-0-1	310/16	5	\wedge	3		 						 	└── ┤──	+ +		<u> </u>
55	SED03-0.0-0.5	5/0/18	5	1	3	\times	$\boldsymbol{\lambda}$	\times	$\left \times \right $	$\mid \times$	λ	λ	$ \chi $				- K
56	SED03 - 0.5 - 0.65	15/10/18	5	A	3												K.
57	SED07 - 6.0-0-5	LIDIIK.	- 5	1	31	X	X	X	×	X	X	×	X				. XO
58	FD07	5/10/68	5	Jer	ĵ						,						Ď
59	FS07	510/16	5	Jar	1			1		+							Ň
		1//////0//0			John States										+		
Value Cont	Iner Codes: P - Unprocessed Blacks: M - Mitria	Preserved Plastic: ONE-Mite	ic Preserved OPC	: SH = Sodium Hydrox		dium Hydroxid	e Preserved F	lastic: AG = Am	ber Glass Unr	reserved: AP -	Ainfreight Llonn	eserved Plasti	c				
= VOA Vial = Zinc Ace	Inter Codes: P = Unpreserved Plastic; N = Nitric I HCI Preserved; VB = VOA Vial Sodium Bisulphate tate Preserved Bottle; E = EDTA Preserved Bottles TRIP SPIKE COMT	Preserved VS \leq voA Vial Si ST = Sterille Bottle; ASS = P $O \geq 0 \geq 100$	lastic Bag for Acid	y; SH = Southt Hyulo AV = Airfreight Unprese I Sulphate Soils; B = U	erved Vial SG = Sulfuric P Inpreserved Bag.	reserved Amb	perGlass; H	HCI preserved	Plastic; HS =	HCI preserved	Speciation bot	tie; SP = Sulfu	ric Preserved P	lastic; F = F	ormaldehyd	e Preserved (Glass;
61	FDOS FOS FSOS			, Ar		•			\$								

alan Santar Mary

-

)

Helen Simpson

From:	Sarah.Eccleshall@ghd.com
Sent:	Monday, 8 October 2018 11:36 AM
То:	Helen Simpson
Subject:	RE: Urgent Change to COC order number 2127477 received 5/10/18

Hi,

Yes the 3rd line is SED06_2.0-2.5. RN02 is W-26T, TRH/BTEX/PAH and 8 total metals

Apologies for the errors: Sample REA01_3.0-3.5 does not exist. Correct labelling is as per the jar for SED05_2.5-2.8 Extra samples FD05 and FS05, both soil. These should be on hold.

Thanks, Sarah

From: Helen Simpson <helen.simpson@alsglobal.com>
Sent: Monday, 8 October 2018 11:30 AM
To: Sarah Eccleshall <Sarah.Eccleshall@ghd.com>
Subject: FW: Urgent Change to COC order number 2127477 received 5/10/18
Importance: High

Hi Sarah,

I've just got to this request.

Assuming that the 3rd line should be sample SED<mark>06</mark>_2.0-2.5 which needs to be analysed??

Please confirm analysis for RN02, should it be for W-26T, TRH/BTEX/PAH and 8 total metals?

Sample REA01_3.0-3.5 was not received.

Sample SED05_2.5-3.0 on the COC was labelled as SED05_2.5-2.8 on the jar, please confirm correct ID for reporting.

Extra samples FD05 and FS05, both soil, on hold.

Kind regards,

Helen Simpson Sample Admin, Environmental

Sydney

<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>helen.simpson@alsglobal.com</u> 277-289 Woodpark Smithfield, NSW, 2164

🔄 Subscribe 🛄 💓 🖬 🕒

We are keen for your feedback! <u>Please click here for your 3 minute survey</u>

EnviroMail[™] 00 - All EnviroMails[™] in one convenient library.

Recent releases (click to access directly): EnviroMail™ 121 Dissolved metals | EnviroMail™ 120 - Microtox | EnviroMail™ 119 - PFAS in Biota Right Solutions · Right Partner www.alsglobal.com

From: Sarah.Eccleshall@ghd.com [mailto:Sarah.Eccleshall@ghd.com]
Sent: Saturday, 6 October 2018 6:40 AM
To: jacob.waugh@alsglobal.com.au; ALSEnviro Sydney <<u>ALSEnviro.Sydney@ALSGlobal.com</u>>; Brenda Hong
<<u>Brenda.Hong@alsglobal.com</u>>
Subject: Urgent Change to COC order number 2127477 received 5/10/18

Hi,

Apologies for the multiple recipients, I wasn't sure who was best placed to assist with this.

I have a request for a COC submitted on 5/10/18 to be updated. Sample SED06_1.0-1.5 should have been on hold and SED__2.0-2.5 should have been selected for those analyses. And REA02_1.0-1.5 should be been on hold and REA02_2.0-2.5 selected for analyses. Analyses for both are B7 suite-TRH,BTEX, PAH, METALS (8); TBT; Dioxins/furans; cyanide; ammonia; TOC; PSD; and moisture content.

Please advise if this update is possible.

Many thanks

Sarah Eccleshall MSc, BSc (Hons) Contamination & Environmental Management

GHD

Proudly employee owned T: <u>+61 2 9239 7715</u> | M: <u>+61 459 546 332</u> | E: <u>sarah.eccleshall@ghd.com</u> Level 15 <u>133 Castlereagh Street Sydney NSW 2000 Australia</u> | <u>www.ghd.com</u> **Connect**

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1829588		
Client Contact Address	E GHD PTY LTD MS JACQUI HALLCHURCH LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Contact	 Environmental Division Sydney Brenda Hong 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail : jacqui.hallchurch@ghd.com Telephone : +61 02 9239 7100 Facsimile : +61 02 9239 7199		Telephone	: Brenda.Hong@alsglobal.com : (02) 8784 8504 : +61-2-8784 8500
Project Order number C-O-C number Site Sampler	C-O-C number : Site :		: 1 of 4 : ES2018GHDSER0015 (SY/236/18) : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Rece Client Requested Du Date		Issue Date Scheduled Reporting D	: 09-Oct-2018 ate : 11-Oct-2018
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Undefined	Security Seal Temperature No. of samples receive	: Not Available : 5.2'c d / analysed : 60 / 19

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Dioxins split into ES1890029.
- Sample REA01_3.0-3.5 was not received.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- PSD analysis will be conducted by ALS Newcastle.
- TOC analysis will be conducted by ALS Brisbane.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

~~ . . .

tasks. Packages as the determin tasks, that are incl lf no sampling default 00:00 on is provided, the laboratory and component Matrix: SOIL Laboratory sample ID	SOIL - EA055-103 Moisture Content	SOIL - EA150H/EA152 Particle Sizing with Hydrometer + Soil Particle	SOIL - EK026SF (Solids) Total Cyanide By Segmented Flow Analyser	SOIL - EK055 (solids) Ammonia as N	SOIL - EP003 Total Organic Carbon (TOC) in Soil	SOIL - EP090 (solids) Organotins	SOIL - S-26 8 metals/TRH/BTEXN/PAH		
ES1829588-001	<i>date / time</i> 05-Oct-2018 00:00	SED06 0.0-0.5	<u>∞ ≥</u>	<u>∽ ∟</u>			<u>∽</u> ⊢	<u>∞</u> 0	<u>∞</u> √
ES1829588-005	05-Oct-2018 00:00	SED06 2.0-2.5	1	1	1	1	1	1	1
ES1829588-010	05-Oct-2018 00:00	 SED05_0.0-0.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-012	05-Oct-2018 00:00	SED05_1.0-1.5	✓	✓	✓	✓	✓	✓	1
ES1829588-013	05-Oct-2018 00:00	SED04_0.0-0.1	✓	✓	✓	✓	✓	✓	✓
ES1829588-015	05-Oct-2018 00:00	SED04_1.0-1.1	✓	✓	✓	✓	✓	✓	1
ES1829588-024	05-Oct-2018 00:00	FS08	✓		✓	✓	✓	✓	1
ES1829588-029	05-Oct-2018 00:00	REA01_0.0-0.5	1	✓	✓	✓	✓	✓	✓
ES1829588-031	05-Oct-2018 00:00	REA01_1.0-1.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-037	05-Oct-2018 00:00	SED04_0.0-0.1	✓	✓	✓	✓	✓	✓	✓
ES1829588-039	05-Oct-2018 00:00	SED04_1.0-1.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-042	05-Oct-2018 00:00	FS06	✓		1	✓	✓	1	✓
ES1829588-043	05-Oct-2018 00:00	REA02_0.0-0.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-047	05-Oct-2018 00:00	REA02_2.0-2.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-049	05-Oct-2018 00:00	SED01_0.0-0.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-052	05-Oct-2018 00:00	SED02_0.5-0.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-055	05-Oct-2018 00:00	SED03_0.0-0.5	✓	✓	✓	✓	✓	✓	✓
ES1829588-057	05-Oct-2018 00:00	SED07_0.0-0.5	1	1	1	✓	✓	1	1

Matrix: SOIL Laboratory sample ID	Client sampling date / time	Client sample ID	(On Hold) SOIL No analysis requested
ES1829588-002	05-Oct-2018 00:00	SED06_0.5-1.0	✓
ES1829588-003	05-Oct-2018 00:00	SED06_1.0-1.5	 ✓
ES1829588-004	05-Oct-2018 00:00	SED06_1.5-2.0	✓
ES1829588-006	05-Oct-2018 00:00	SED06_2.5-3.5	 ✓
ES1829588-007	05-Oct-2018 00:00	SED06_3.0-3.5	 ✓
ES1829588-008	05-Oct-2018 00:00	SED06_3.5-4.0	 ✓

			(On Hold) SOIL No analysis requested
			s requ
			lold) S alysis
			(On Hold) SOII No analysis rec
ES1829588-009	05-Oct-2018 00:00	SED06_4.0-4.4	1
ES1829588-011	05-Oct-2018 00:00	SED05_0.5-1.0	✓
ES1829588-014	05-Oct-2018 00:00	SED04_0.5-0.6	1
ES1829588-016	05-Oct-2018 00:00	SED04_1.5-1.6	 ✓
ES1829588-017	05-Oct-2018 00:00	SED004_2.0-2.1	 ✓
ES1829588-018	05-Oct-2018 00:00	SED04_2.5-2.6	 ✓
ES1829588-019	05-Oct-2018 00:00	FD04	 ✓
ES1829588-020	05-Oct-2018 00:00	FS04	 ✓
ES1829588-021	02-Oct-2018 00:00	TRIP SPIKE	 ✓
ES1829588-022	02-Oct-2018 00:00	TRIP BLANK	 ✓
ES1829588-025	05-Oct-2018 00:00	SED05_1.5-2.0	 ✓
ES1829588-026	05-Oct-2018 00:00	SED05_2.0-2.5	✓
ES1829588-027	05-Oct-2018 00:00	SED05_2.5-2.8	 ✓
ES1829588-030	05-Oct-2018 00:00	REA01_0.5-1.0	 ✓
ES1829588-032	05-Oct-2018 00:00	REA01_1.5-2.0	 ✓
ES1829588-033	05-Oct-2018 00:00	REA01_2.0-2.5	 ✓
ES1829588-034	05-Oct-2018 00:00	REA01_2.5-3.0	 ✓
ES1829588-036	05-Oct-2018 00:00	REA02_2.5-3.0	 ✓
ES1829588-038	05-Oct-2018 00:00	SED04_0.5-1.0	 ✓
ES1829588-040	05-Oct-2018 00:00	SED04_1.5-2.0	 ✓
ES1829588-041	05-Oct-2018 00:00	SED04_2.0-2.5	 ✓
ES1829588-044	05-Oct-2018 00:00	REA02_0.5-1.0	 ✓
ES1829588-045	05-Oct-2018 00:00	REA02_1.0-1.5	 ✓
ES1829588-046	05-Oct-2018 00:00	REA02_1.5-2.0	 ✓
ES1829588-048	05-Oct-2018 00:00	SED01_0.0-0.1	 ✓
ES1829588-050	05-Oct-2018 00:00	SED01_0.5-0.65	 ✓
ES1829588-051	05-Oct-2018 00:00	SED02_0.0-0.1	✓
ES1829588-053	05-Oct-2018 00:00	SED02_0.55-0.65	✓
ES1829588-054	05-Oct-2018 00:00	SED03_0.0-0.1	✓
ES1829588-056	05-Oct-2018 00:00	SED03_0.5-0.65	✓
ES1829588-058	05-Oct-2018 00:00	FD07	✓
ES1829588-059	05-Oct-2018 00:00	FS07	✓
ES1829588-060	02-Oct-2018 00:00	TRIP SPIKE CONTROL	✓
ES1829588-061	05-Oct-2018 00:00	FD05	✓
ES1829588-062	05-Oct-2018 00:00	FS05	1

 Issue Date
 : 09-Oct-2018

 Page
 : 4 of 4

 Work Order
 : ES1829588 Amendment 0

 Client
 : GHD PTY LTD

			Metals
Matrix: WATER			W-26T XN/PAH/Total 8
Laboratory sample	Client sampling	Client sample ID	VATER - 'RH/BTE
ID	date / time		<u> </u>
ES1829588-023	06-Oct-2018 00:00	RN02	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (Brisbane)	—	
- A4 - AU Tax Invoice (INV)	Email	ap-fss@ghd.com
	F	
- *AU Certificate of Analysis - NATA (COA)	Email	ghdlabreports@ghd.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ghdlabreports@ghd.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ghdlabreports@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ghdlabreports@ghd.com
- Attachment - Report (SUBCO)	Email	ghdlabreports@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	ghdlabreports@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	ghdlabreports@ghd.com
JACQUI HALLCHURCH		
 *AU Certificate of Analysis - NATA (COA) 	Email	jacqui.hallchurch@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jacqui.hallchurch@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	jacqui.hallchurch@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jacqui.hallchurch@ghd.com
- A4 - AU Tax Invoice (INV)	Email	jacqui.hallchurch@ghd.com
- Attachment - Report (SUBCO)	Email	jacqui.hallchurch@ghd.com
- Chain of Custody (CoC) (COC)	Email	jacqui.hallchurch@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	jacqui.hallchurch@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	jacqui.hallchurch@ghd.com
- EDI Format - XTab (XTAB)	Email	jacqui.hallchurch@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	jacqui.hallchurch@ghd.com
SARAH ECCLESHALL		
 *AU Certificate of Analysis - NATA (COA) 	Email	sarah.eccleshall@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sarah.eccleshall@ghd.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	sarah.eccleshall@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sarah.eccleshall@ghd.com
- Attachment - Report (SUBCO)	Email	sarah.eccleshall@ghd.com
- Chain of Custody (CoC) (COC)	Email	sarah.eccleshall@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	sarah.eccleshall@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	sarah.eccleshall@ghd.com
- EDI Format - XTab (XTAB)	Email	sarah.eccleshall@ghd.com
- Electronic SRN for ESdat (ESRN_ESDAT)	Email	sarah.eccleshall@ghd.com
	Linda	caran.coolconan@gnd.com

CERTIFICATE OF ANALYSIS

Work Order	ES1829588	Page	: 1 of 17
Client		Laboratory	Environmental Division Sydney
Contact	: MS JACQUI HALLCHURCH	Contact	: Brenda Hong
Address	ELEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 9239 7100	Telephone	: (02) 8784 8504
Project	: 21-27477	Date Samples Received	: 05-Oct-2018 20:30
Order number	:	Date Analysis Commenced	: 08-Oct-2018
C-O-C number	:	Issue Date	: 23-Oct-2018 11:07
Sampler	: SARAH ECCLESHALL		Iac-MRA NATA
Site	:		
Quote number	: SY/236/18		Accreditation No. 825
No. of samples received	: 60		Accredited for compliance with
No. of samples analysed	: 19		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW	
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD	
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW	
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW	
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	

Page	: 2 of 17
Work Order	ES1829588
Client	: GHD PTY LTD
Project	21-27477

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA150H: The majority of soil particle density results fell outside the scope of AS1289.3.6.3. Results should be scrutinised accordingly.
- EP075(SIM): LOR for samples raised due to high amount of moisture present.
- EG035: Positive Hg results for ES1829588 #29,31 have been confirmed by reanalysis.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page	: 3 of 17
Work Order	: ES1829588
Client	: GHD PTY LTD
Project	21-27477

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			SED06_0.0-0.5	SED06_2.0-2.5	SED05_0.0-0.5	SED05_1.0-1.5	SED04_0.0-0.1
	Clie	ent sampliı	ng date / time	05-Oct-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1829588-001	ES1829588-005	ES1829588-010	ES1829588-012	ES1829588-013
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%	48.1	37.6	47.7	47.8	55.7
A150: Particle Sizing								
+75μm		1	%	18	30	8	6	6
+150μm		1	%	12	10	3	2	2
+300μm		1	%	7	<1	2	1	<1
+425μm		1	%	3	<1	<1	<1	<1
+600µm		1	%	2	<1	<1	<1	<1
+1180µm		1	%	<1	<1	<1	<1	<1
+2.36mm		1	%	<1	<1	<1	<1	<1
+4.75mm		1	%	<1	<1	<1	<1	<1
+9.5mm		1	%	<1	<1	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
A150: Soil Classification based on P	article Size							
Clay (<2 μm)		1	%	21	19	23	22	22
Silt (2-60 µm)		1	%	53	43	65	65	50
Sand (0.06-2.00 mm)		1	%	26	38	12	13	28
Gravel (>2mm)		1	%	<1	<1	<1	<1	<1
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.22	2.54	2.34	2.31	2.36
G005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	15	9	15	21	17
Cadmium	7440-43-9	1	mg/kg	2	2	<1	1	<1
Chromium	7440-47-3	2	mg/kg	104	85	82	104	80
Copper	7440-50-8	5	mg/kg	157	67	241	216	240
Lead	7439-92-1	5	mg/kg	168	145	172	236	163
Nickel	7440-02-0	2	mg/kg	21	20	18	24	19
Zinc	7440-66-6	5	mg/kg	930	1120	671	900	639
G035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.5	0.2	0.4	0.6	0.4
K026SF: Total CN by Segmented Fl	ow Analyser							
Total Cyanide	57-12-5	1	mg/kg	4	27	1	4	<2

Page	: 4 of 17
Work Order	ES1829588
Client	: GHD PTY LTD
Project	21-27477

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SED06_0.0-0.5	SED06_2.0-2.5	SED05_0.0-0.5	SED05_1.0-1.5	SED04_0.0-0.1
	Cli	ient samplii	ng date / time	05-Oct-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1829588-001	ES1829588-005	ES1829588-010	ES1829588-012	ES1829588-013
, .			-	Result	Result	Result	Result	Result
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20	110	<20	40	<20
EP003: Total Organic Carbon (TOC) i	n Soil							
Total Organic Carbon		0.02	%	11.6	4.33	8.76	7.51	6.38
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	11.2	24.9	12.7	9.1	8.6
Acenaphthylene	208-96-8	0.5	mg/kg	1.6	1.9	1.1	1.0	<0.8
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.8
Fluorene	86-73-7	0.5	mg/kg	1.9	1.4	1.2	1.1	0.8
Phenanthrene	85-01-8	0.5	mg/kg	6.5	4.8	4.6	4.0	3.1
Anthracene	120-12-7	0.5	mg/kg	2.4	1.5	1.6	1.4	1.2
Fluoranthene	206-44-0	0.5	mg/kg	8.1	4.5	5.5	5.1	3.9
Pyrene	129-00-0	0.5	mg/kg	7.4	5.6	5.0	4.5	3.6
Benz(a)anthracene	56-55-3	0.5	mg/kg	3.8	1.4	2.6	2.1	1.7
Chrysene	218-01-9	0.5	mg/kg	4.1	1.6	2.6	2.2	1.8
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	6.9	2.3	4.3	3.8	2.8
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	2.6	0.8	1.3	1.3	0.9
Benzo(a)pyrene	50-32-8	0.5	mg/kg	5.5	2.0	3.5	3.2	2.3
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	3.0	1.0	1.8	1.6	1.2
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	0.9	<0.5	0.5	0.5	<0.8
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	3.5	1.3	2.2	1.9	1.4
Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	69.4	55.0	50.5	42.8	33.3
∖ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	8.1	2.6	5.0	4.6	3.0
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	8.1	2.8	5.0	4.6	3.2
` Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	8.1	3.1	5.0	4.6	3.5
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	530	570	340	340	230
C29 - C36 Fraction		100	mg/kg	400	470	340	310	220
C10 - C36 Fraction (sum)		50	mg/kg	930	1040	680	650	450
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10